Abstract:A field experiment was conducted to determine the effects of a rainwater-harvesting furrow/ridge system (RHFRS) on water use efficiency (WUE) and grain yield of spring com in different simulated rainfall treatments. Our results showed that when rainfall supply ranged between 230 and 440 mm, the rainwater-harvesting furrow/ridge system increased surface temperature by 0.7–1°C at the depth of 10 cm and increased soil water storage by 5%–12% in the soil layer of 0–120 cm compared with the control. Emergence was also more rapid in the furrow-ridge system. Spring corn yield in the rainwater-harvesting furrow/ridge system was 83% higher in the 230 mm rainfall treatment, 43% higher in the 340 mm rainfall treatment, and 11% higher in the 440 mm rainfall treatment compared with the control. Similarly, WUE was 77% higher in the 230 mm rainfall treatment, 43% higher in the 340 mm treatment, and 10% higher in the 440 mm treatment than those of the control under the corresponding rainfalls. In summary, results from this study indicate that 440 mm rainfall during the spring corn growing season is the upper limit for which the rainwater-harvesting furrow/ridge system should be adopted.+