基于多尺度地理加权回归模型的黑龙江省植被NPP时空演变研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(SQ2020YFF0426320);黑龙江省生态空间优化环境要素成果更新技术支持项目


Spatio-temporal evolution of vegetation NPP in Heilongjiang Province based on the multi-scale geographically weighted regression model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    净初级生产力(Net primary productivity,NPP)是估算碳储量的关键指标,从地理空间的角度了解NPP变化的驱动机制对于区域碳循环研究至关重要。基于MOD17A3数据,通过趋势分析探讨2000-2020年黑龙江省植被NPP的时空演变特征,然后应用多尺度地理加权回归模型(MGWR)这一新颖的空间统计分析方法,解析NPP变化驱动因素的空间分异特征。结果表明:近二十年黑龙江省大部分区域NPP呈增长趋势,全省NPP平均值从348.90 g C m-2 a-1上升到454.00 g C m-2 a-1,增长率为29.95%。NPP增减显著的情况通常出现在植被改善明显、耕地扩张和城市化进程剧烈的区域。MGWR整体模拟效果良好(调整R2= 0.875),模型带宽显示降水、气温、人口密度和土地利用变化对NPP的作用规模为县域尺度,而道路密度的作用规模为市域尺度。不同区域植被NPP对驱动因子的响应存在明显差异,在大小兴安岭地区NPP受土地利用变化和气候因子的共同影响,而在三江平原和松嫩平原土地利用变化是影响NPP的主导因素。生态保护修复工程实施及耕地和城市扩张所带来的土地利用变化是黑龙江省植被NPP变化的重要因素。本研究可加深对东北地区植被动态变化及其驱动机制的认识,为生态系统碳汇功能提升提供科学依据。

    Abstract:

    Net primary productivity (NPP) is a critical indicator of carbon stocks. Understanding its geospatial drivers is essential for regional carbon cycle research. This study analyzed the spatial and temporal evolution characteristics of vegetation NPP in Heilongjiang Province from 2000 to 2020 using trend analysis based on MOD17A3 data. Subsequently, the spatial differentiation of the factors driving changes in NPP was explored using the multi-scale geographically weighted regression (MGWR) model, a novel spatial statistical analysis method. The results indicated that NPP showed an increasing trend in most regions of Heilongjiang Province over the past two decades. The average value of NPP increased from 348.90 g C m-2 a-1 to 454.00 g C m-2 a-1, reflecting a growth rate of 29.95%. Significant increases and decreases in NPP primarily occurred in regions with noticeable improvement in vegetation cover, as well as intensive expansion of arable land and urbanization. The MGWR model performed well overall, with an adjusted R2 value of 0.875. The model bandwidth revealed that precipitation, temperature, population density, and land use change contributed to NPP at the county scale, while road density contributed to NPP at the city scale. The response of vegetation NPP to these driving factors varied notably across regions. In the Xinganling Mountains, NPP was influenced by land use change and climate factors, whereas in the Sanjiang Plain and Songnen Plain, land use change was the dominant factor affecting NPP. Land use changes driven by ecological protection and restoration initiatives, as well as the expansion of farmland and urban areas, were important contributors to the changes in vegetation NPP in Heilongjiang Province. This study improved the understanding of vegetation dynamics and its driving mechanism in Northeast China, providing a scientific basis for improving the ecosystem carbon sink.

    参考文献
    相似文献
    引证文献
引用本文

乔亚军,徐网谷,刘坤,裴文明,王智,韩晓盈,张慧.基于多尺度地理加权回归模型的黑龙江省植被NPP时空演变研究.生态学报,2025,45(10):4878~4888

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: