基于一维卷积神经网络与自编码算法的松属物种鉴别机制
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

福建省自然科学基金项目(2023J011094);福建省高校产学合作项目(2021H6003);全国大学生创新创业国家级项目(202413763002)


Identification mechanism of Pinus species based on one dimensional convolutional neural network model and self-coding algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    松属植物具有重要的生态和经济价值。但松属植物的基因组庞大、分子进化慢,物种的特征相似性极高,辨别难度大。为解决传统松属物种鉴别方法存在的成本高、耗时长、准确率低、操作复杂等问题,提出了一种基于松属近红外光谱数据(NIRS)并结合一维连续型卷积神经网络(1D-CS-CNN)与自编码技术的松属物种检测机制。使用更高效率的连续型结构替代传统1D-CNN模型中隐含层结构,并针对松属NIRS数据适应性改进为1D-CS-CNN模型,使其可直接应用于一维NIRS数据。结合自编码器的重构误差设计一种考虑未知类别的松属物种鉴别方法,通过待测样本的自编码重构误差来解决卷积神经网络置信度过高的问题,将修正的置信度与预先设定的阈值进行比较,判断该样本是否为未知品种。实验结果表明,1D-CS-CNN训练集与测试集准确率均达到近100%,损失值收敛为0.015,改进后的1D-CS-CNN模型识别速度更快;同时,自编码模型对未知类别松属检测机制识别率为99%。实验结果证明,该模型可快速高效分类出不同松属物种,同时检测出松属新物种。

    Abstract:

    Pinus species hold important ecological and economic value. However, the large genomes and slow molecular evolution of Pinus species result in highly similar morphological traits, complicating inter-specific identification. In order to solve the problems of high cost, long time, low accuracy and complex operation of traditional identification methods, this paper designed a detection method based on near-infrared spectral data (NIRS), one-dimensional continuous convolutional neural network (1D-CS-CNN) and Auto-encoder technology for Pinus species. Initially, the 1D-CS-CNN model uses the efficient Continuous Structure (CS) to replace the hidden layer structure in the traditional 1D-CNN model. The model can be directly applied to analyze one-dimensional near-infrared spectral data (NIRS). Next, combining the reconstruction error of the auto-encoder, a identification method considering an unknown origin is designed for Pinus species, which can solve the problem of high confidence in convolution neural networks by using an auto-encoder and reconstruction errors of the samples to be tested. Whether the sample is an unknown variety can be determined by comparing the corrected confidence level with the preset threshold value. The results show that the 1D-CS-CNN training set achieves 100% accuracy, with the loss value stabilizing at 0.015. Compared with the traditional 1D-CNN model, the improved 1D-CS-CNN model has faster recognition speed. Meanwhile, the accuracy rate of the auto-encoder for the category detection mechanism of Pinus species from an unknown origin is 99%. The experimental results show that the model can quickly and efficiently classify different species of Pinus and detect the new species in Pinus.

    参考文献
    相似文献
    引证文献
引用本文

陈冬英,翁伟雄,陈培亮,魏建崇.基于一维卷积神经网络与自编码算法的松属物种鉴别机制.生态学报,2025,45(5):2401~2411

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: