基于遗传算法-PLUS模型的黄河流域景观生态脆弱性多情景模拟
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家社会科学基金项目(22BJY108);湖南工商大学"数智+"学科交叉研究项目(2023SZJ03)


Multi-scenario simulation of landscape ecological vulnerability in the Yellow River Basin based on GA-PLUS model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    黄河流域生态保护和高质量发展是党中央作出的重大战略决策,如何科学谋划、统筹构建黄河流域土地利用和生态系统新格局极具现实意义。从多情景下景观生态脆弱性预测这一较为新颖的研究视角切入研究,在分析黄河流域1995-2020年土地利用类型转移情况的基础上,针对流域自然发展、生态保护、经济发展、生态保护与经济发展兼顾的协调发展4种不同发展目标,耦合Genetic Algorithm(GA)优化算法与Patch-generating Land Use Simulation(PLUS)模型,对土地利用类型转移概率进行优化,进而模拟2030年土地利用格局、盐碱地和湿地空间分布;在土地利用模拟的基础上计算景观格局指数和景观生态脆弱度,据此分析黄河流域生态脆弱性演变特征。主要结论如下:(1)在2030年土地利用多情景模拟中,林地、草地和水域面积在四种情景下均有一定程度的增加,生态系统修复效果明显;协调发展情景下水域扩张程度最大,建设用地扩张率大幅低于自然发展和经济发展情景;(2)相较于2020年,2030年盐碱化程度增加,自然发展情景情况最为严峻;湿地生态系统修复效果明显,协调发展情景下恢复程度最大;(3)黄河流域2030年林地、草地、水域和建设用地破碎化程度减弱,耕地和未利用地则相反;流域整体景观破碎度较2020年有所降低,土地利用的丰富性和多样性提升;(4)相较于2020年,黄河流域2030年的景观生态脆弱性仍有加剧趋势。生态保护情景下恶化程度较缓,协调发展情景对于流域上游水系风蚀区的水土保持和中部平原地区生态平衡的效果十分显著。研究结果为黄河流域国土空间规划和生态保护治理提供了新的理论基础和实践证据。

    Abstract:

    The ecological protection and high-quality development of the Yellow River Basin is a major strategic decision made by the Party Central Committee, and the scientific construction of a new pattern of land use and ecosystem in the Yellow River Basin is of great practical significance. This study starts from a relatively novel research perspective of landscape ecological vulnerability prediction in multiple scenarios, based on the analysis of land use type transfer in the Yellow River Basin from 1995 to 2020, for the four different development objectives of natural development, ecological protection, economic development, and coordinated development with ecological protection and economic development, the Genetic Algorithm (GA) optimization algorithm is coupled with the Patch-generating Land Use Simulation (PLUS) model to optimize the transfer probability of land use types, then simulate the spatial distribution of land use patterns, saline alkali land and wetlands in 2030, and calculated the landscape index and landscape ecological vulnerability on the basis of Land Use and Land Cover Change, and the evolution of ecological vulnerability characteristics of the Yellow River Basin were analyzed accordingly. The results showed that: (1) in the multi-scenario simulation of the LUCC in 2030, the forestland, grassland and water have increased to some extent in the four scenarios, and this demonstrates the effectiveness of ecosystem restoration; compared with other three scenarios, water expand the most in the coordinated development scenario, and the expansion rate of construction land is substantially lower than that of the natural development and economic development scenarios; (2) compared with 2020, salinization increases in 2030, with the most severe situation in the natural development scenario; the wetland ecosystem restoration effect is obvious, with the greatest degree of recovery in the coordinated development scenario; (3) the fragmentation of forestland, grassland, water and construction land in the Yellow River Basin in 2030 is weakened, while the opposite is true for cropland and unused land; compared to 2020, the overall landscape fragmentation of the basin has decreased, and the richness and diversity of land use has increased; (4) Compared with 2020, the landscape ecological vulnerability in the Yellow River Basin will continue to increase in 2030. The degree of deterioration is slower in the ecological protection scenario, and the coordinated development scenario is very effective for soil and water conservation in the wind-eroded areas of the upper watershed system and for ecological balance in the central plains. The results of this study provide a new theoretical foundation and practical evidence for land space planning and ecological protection in the Yellow River Basin.

    参考文献
    相似文献
    引证文献
引用本文

王韧,王嘉睿,颜建军,贾云,郜晨,张秋泓.基于遗传算法-PLUS模型的黄河流域景观生态脆弱性多情景模拟.生态学报,2025,45(2):567~585

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: