基于无人机影像的城市单木三维绿量模拟
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

十三五国家重点研发计划课题(2018YFC0704705);国自然科学基金青年科学基金项目(42201200)


Three-dimensional green biomass simulation of urban individual tree based on UAV imagery
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    三维绿量的科学测算对于评估城市绿化水平和开展生态效益定量研究至关重要。目前广泛应用的基于遥感影像的绿量测量方法需结合实地调查,获取树种信息并构建不同树种树冠形态参数关系模型,这一过程费时费力。研究基于高分辨率遥感影像可直接量化的因子模拟单木绿量,旨在提高绿量测算效率,为绿量测算提供新方案。利用无人机航拍获取福州城市地区厘米级遥感影像,采用遥感影像法测算不同地区(街道、街区及城市地区)单木及总绿量;对比分析不同地区绿量特征;构建基于遥感影像可直接量化的因子与不同地区绿量的回归模型。结果表明:(1)福州市街道内行道树种类相对单一,以榕树为主(占比61.3%);而街区内树种配置多样,各树种占比相对均衡。街道、街区及城市地区平均单木绿量存在较大差异,分别为351.6、143.7、161.4m3。(2)利用树冠投影面积、树冠投影周长与街道、街区及城市地区单木绿量构建的回归模型,校正后R2分别为0.921、0.873和0.882,表明利用回归模型可快速且精确地测算不同地区单木及总绿量。

    Abstract:

    Accurate measurement of three-dimensional green biomass is essential for assessing urban greening levels and conducting quantitative ecological benefit studies. Current remote sensing-based green biomass measurement methods require time-consuming field surveys to collect tree species data and establish species-specific crown morphological parameter models. This study develops an efficient green biomass estimation approach by simulating individual-tree green biomass using directly quantifiable parameters from high-resolution remote sensing imagery. First, centimeter-level UAV imagery was acquired across Fuzhou's urban areas, and remote sensing methods were employed to measure the individual and total green biomass in different areas (streets, neighborhoods, and urban areas). Next, the green biomass characteristics of different areas were compared and analyzed. Finally, regression models were constructed using directly quantifiable factors from remote sensing imagery to estimate the green biomass in various regions. Key findings reveal: (1) Street trees in Fuzhou show low species diversity (61.3% Ficus spp.), while neighborhoods maintain balanced species distributions. Significant green biomass variations exist across spatial scales (streets: 351.6 m3; neighborhoods: 143.7 m3; urban areas: 161.4 m3). (2) Regression models using canopy projection area and perimeter achieved high precision (adjusted R2: 0.921 for streets, 0.873 for neighborhoods, 0.882 for urban areas), demonstrating an accurate, efficient solution for multi-scale green biomass assessment.

    参考文献
    相似文献
    引证文献
引用本文

邱瑶,石龙宇,罗涛,赵宇.基于无人机影像的城市单木三维绿量模拟.生态学报,2025,45(11):5378~5385

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: