Abstract:Soil Collembola are an important part of terrestrial ecosystems and play important roles in enhancing soil fertility and other soil properties. Furthermore, soil Collembola are good indicator species for the soil environment. At present, most studies have been concerned with community structure and ecological distribution of soil Collembola, but little research has addressed soil Collembola in the Changbai Mountains. To investigate the community structure and ecological distribution of soil Collembola from typical farmland ecosystems in the Changbai Mountains, three typical geomorphic types, including basalt platform, granite low-mountain, and granite hills, were chosen from the Changbai Mountains. The study was conducted in spring (May), summer (July), and autumn (September) of 2015. The results could help to provide a scientific basis for maintaining and managing farmland ecosystems in the Changbai Mountains. The plots (5 m×5 m) were established using permanent signs in each maize field in the three landforms. Within each plot, we randomly selected five subplots, 10 cm×10 cm, where we made collections from the 0-5 cm, 5-10 cm, and 10-15 cm soil layers. Soil Collembola were extracted from each of the soil sample by using a Tullgren funnel extractor. The effects of landforms and seasonal variation on the individual density and species number of soil Collembola were analyzed using a one-way ANOVA. Indexes of diversity were calculated to describe the characteristics of the soil Collembola community. The influence of soil environmental factors on soil Collembola diversity was examined using redundancy analysis (RDA). We obtained 881 collembolan individuals in the three landforms, belonging to 10 families, 16 genera, and 22 species. Significant differences were observed in individual density and species number of soil Collembola for all three landforms. The order for individual density was as follows:granite low-mountain > granite hills > basalt platform. Furthermore, the order for species number was as follows:granite hills > basalt platform > granite low-mountain. In this study, Protaphorura sp.1, Proisotoma sp.1, and Proisotoma sp.2 were the dominant species, accounting for 56.04%. There were 11 common species, accounting for 41.59%. In addition, eight species were rare, accounting for 2.37%. Landforms and sampling time had a significant effect on individual density, species number, and indexes of diversity of soil Collembola. In granite low-mountain and granite hills, the dynamics of individual density and species number of soil Collembola were autumn > spring > summer. In the basalt platform, the dynamics of species number of soil Collembola was autumn > summer > spring. Regardless of landform, soil Collembola had the highest diversity during autumn. The Shannon-Wiener indexes were significantly different in the three landforms during summer (P < 0.05), and the one-way ANOVA showed that a significantly lower abundance and richness of soil Collembola was evident in the basalt platform compared to that of the other landforms in autumn (P < 0.05). In addition, different environmental factors had various influences on soil Collembola. Redundancy analysis (RDA) showed that the community structure and ecological distribution of soil Collembola had obvious correlations with soil moisture, soil temperature, organic matter, total nitrogen, available nitrogen, and total phosphorus. In this study, geomorphic types and seasonal variations had significant effects on community structure and ecological distribution of soil Collembola.