Abstract:Tussah-feeding oak forests (here after referred to as TF oak forests) are seriously degraded forests in the mountainous areas of Eastern Liaoning Province. Owing to repeated cutting every year, the trees grow slowly and their ability to regenerate is markedly decreased. When open spaces appear, the soil begins to become sandy, which causes a decline in ecosystem services such as water storage and soil conservation. In this study, the water holding capacity of the litter and surface soil were investigated in a degraded TF oak forest after 9, 12, and 21 years of enclosure to facilitate recovery. In addition, the degraded TF oak forest was studied to identify the effects of enclosure and recovery time on the water holding capacity of litter and surface soil, using the spatial sequence as opposed to the time succession sequence. Litter in degraded TF oak forests increased significantly after enclosure, with more litter accumulating with increased enclosure time. Litter accumulation after 9, 12, and 21 years of enclosure was 7.92, 8.41, and 8.74 t/hm2, respectively, which was 1.15, 1.28, and 1.37 times greater than those of the degraded TF oak forest, respectively. Longer enclosure times were associated with better litter water-holding capacity and improved rainfall retention. The maximum water holding capacity of TF oak forest after 9, 12, and 21 years of enclosure was 14.71, 15.81, and 17.18 t/hm2, respectively, which was 1.36-, 1.54-, and 1.76-fold higher than that of the degraded TF oak forest. The effective retention capacity of TF oak forest after 9, 12, and 21 years of enclosure was 10.87, 11.70, and 12.78 t/hm2, respectively, which was 1.29-, 1.46-, and 1.69-fold higher than that of the degraded TF oak forest, respectively. Litter water holding capacity and immersion time were significantly correlated (P < 0.001). The best fitting curve for this relationship took the form Hl=a + b ln t, and the coefficients of determination for all enclosures (R2) were greater than 0.9. The hydro-physical properties of surface soil of degraded TF oak forests improved following enclosure, with longer enclosure times associated with greater improvements in surface soil hydro-physical properties. Compared to the degraded TF oak forests, soil bulk density at 0-15 cm depth was reduced by 5.51%, 12.60%, and 17.32% in the TF oak forests after 9, 12, and 21 years of enclosure, while total porosity increased by 12.21%, 41.85%, and 72.35%, respectively. Longer enclosure times were associated with increased soil water storage capacity. Compared to the degraded TF oak forests, water holding capacity in soil capillary pores increased by 7.01%, 28.98%, and 54.83%, while water holding capacity in soil non-capillary pores increased by 46.14%, 126.19%, and 187.19%, respectively in the TF oak forests after 9, 12, and 21 years of enclosure. Litter and surface soil water holding capacity were improved significantly after enclosure and recovery of degraded TF oak forests. Thus, enclosure played an important role the recovery and improvement of the local ecological environment, and increased forest productivity.