干扰对典型草原生态系统土壤净呼吸特征的影响
作者:
作者单位:

中国农业大学;甘肃农业大学,中国农业大学,中国农业大学,中国农业大学,甘肃农业大学,中国农业大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家科技支撑计划(2012BAC01B02);公益性行业(农业)科研专项(201203006)


The response of net soil respiration to different disturbances in a typical grassland of northern China
Author:
Affiliation:

Grassland Science Department,College of Animal Science and Technology,China Agricultural University;China;;Pratacultural College,Gansu Agricultural University,Lanzhou;China,Grassland Science Department,College of Animal Science and Technology,China Agricultural University,Grassland Science Department,College of Animal Science and Technology,China Agricultural University,Grassland Science Department,College of Animal Science and Technology,China Agricultural University,Pratacultural College,Gansu Agricultural University,Lanzhou,Grassland Science Department,College of Animal Science and Technology,China Agricultural University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    由于土地利用格局的改变和人类干扰活动的加剧,草地生态系统CO2排放与固定的平衡、碳循环特征以及碳储量越来越受到人们的重视。尤其是定量区分土壤净呼吸与土壤总呼吸量之间的比例关系,以及定量描述草地生态系统碳循环过程等方面的研究尚不够完善。以河北沽源的典型草原为研究对象,测定了火烧、灌溉、施肥、刈割干扰下的天然草地土壤净呼吸变化动态及其与主要控制因素之间的关系。结果表明:不同处理土壤净呼吸均表现出明显的季节性变化规律,变化趋势基本一致。火烧、灌溉和刈割处理分别比对照的土壤净呼吸通量降低了28.93%、16.25%和36.82%。土壤温度、土壤湿度与土壤净呼吸通量呈指数相关(P <0.01)。对地上生物量、地下生物量、土壤有机碳含量和土壤全氮含量与土壤净呼吸之间进行逐步回归分析表明,土壤有机碳含量(SC)和土壤全氮含量(SN)是土壤净呼吸通量的主要影响因素。

    Abstract:

    The release of carbon (C) in the biogeochemical cycle of grassland vegetation, soil, and the atmosphere mainly results from metabolism and respiration in roots, soil mineralization, and microbial activities. Soil temperature, soil moisture, above-ground biomass, below-ground biomass, soil nutrition, and microbiological composition can all affect soil respiration in grassland ecosystems. Fire has been identified as one of the most important factors controlling ecosystem processes and the C cycle. Soil nitrogen (N) availability influences plant growth, net primary productivity, and litter decomposition, all of which can affect the supply of C substrate for plant roots and soil microorganisms. Mowing, contrary to grazing, non-selectively affects all plants in a community by removing their above-ground biomass, traditionally only once or twice a year. Rainfall can affect the mineral composition of grasses. Correctly evaluating the effects of different disturbances on the grassland C cycle has contributed to understanding the effects of various management practices on grasslands. Soil net respiration plays an important role in regulating the responses of ecosystems and global C cycling to natural and anthropogenic disturbances. When total soil respiration is investigated, the net soil respiration flux is usually taken as a basis for measuring the net C release from grasslands to the atmosphere. Therefore, research on the quantitative distinction between net soil respiration and total soil respiration and quantitative descriptions of the C cycle processes of grassland ecosystems has imperfections. To address this, a grassland in the Hebei Guyuan national grassland ecosystem field scientific observation station was used as to investigate soil net respiration dynamics by the root exclusion method under irrigation, N fertilization, mowing, and burning, and in an undisturbed grassland from April 2011 to October 2012. The results showed consistent and obvious seasonal changes in soil net respiration under the different disturbances. Soil net respiration under all disturbance types was higher in late spring than in summer and lower in early spring and autumn. The soil net respiration rate under burning, irrigation, and mowing was decreased by 28.93%, 16.25%, 36.82%, respectively, compared with undisturbed grassland. The soil temperature and soil moisture were exponentially correlated with soil net respiration rate (P <0.01). Regression analysis of the seasonal mean soil net respiration with above-ground biomass, below-ground biomass, soil organic C content, and soil total N contents demonstrated that soil organic C and total N content were the main influences on soil net respiration. Therefore, it was concluded that in the north temperate grassland area, soil temperature can better explain the inter-annual variability of soil net respiration than can soil moisture. The regulating action of soil moisture on soil net respiration should consider not only climate characteristics but also intra-zone water distribution. Soil organic C and total N content are crucial factors for soil net respiration. Under certain time-space conditions, soil net respiration under the disturbances was significantly different than in undisturbed grassland. Irrigation, N fertilization, mowing, and burning can all increase the C sequestration ability of grassland ecosystems. The different mechanisms by which irrigation, burning, mowing, and N fertilization were found to influence soil net respiration will facilitate the simulation and projection of ecosystem C cycling in the semi-arid grassland of northern China.

    参考文献
    相似文献
    引证文献
引用本文

阚雨晨,武瑞鑫,钟梦莹,王建勋,蒲小鹏,邵新庆.干扰对典型草原生态系统土壤净呼吸特征的影响.生态学报,2015,35(18):6041~6050

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: