绿色空间环境特征对居民运动行为的影响研究 ——基于北京市运动大数据的实证分析
DOI:
作者:
作者单位:

1.北京林业大学经济管理学院;2.中国人民大学 生态环境学院;3.中国信息通信研究院

作者简介:

通讯作者:

中图分类号:

基金项目:

北京社科基金青年项目“运动大数据驱动的北京城区绿地优化配置与居民满意度提升研究(19YJC022)


Exploring the Impact of Green Space Characteristics on Residents’ Physical Activity: An Empirical Study Based on Big Data from Beijing
Author:
Affiliation:

School of Economics and Management, Beijing Forestry University

Fund Project:

Beijing Social Science Foundation Youth Program

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    摘要:绿色空间既是城市生态系统的重要组成部分,也是支持居民日常活动、促进身心健康的公共资源。厘清绿色空间特征如何影响居民运动行为,对于提升绿色空间效益、实现公共健康目标具有重要意义。本文基于运动平台地图可视化数据,提取并构建了北京市约6.5万条居民运动轨迹,并与高精度绿地矢量数据结合,分析了绿色空间环境特征与居民运动行为之间的关系。研究发现,居民更倾向选择大型、形态紧凑的绿色空间,且NDVI与运动呈倒U型关系,提示适度绿化的重要性。引入空间自相关检验与空间计量模型后,我们发现运动行为在空间上具有显著的聚集性,局部绿色空间的活力会通过邻里传播机制影响更广阔区域。为进一步解析这种空间相关特征,我们区分了空间误差效应与空间滞后效应,提出绿色空间使用可能存在生态与行为之间的正反馈机制。在此基础上,本文从“本地优化”“邻里协同”与“网络连通”三个层面提出相关政策建议,强调绿色空间规划应在提升空间品质的同时,注重行为活力的空间外溢与整体绿色网络效能的协同提升。研究为城市绿色空间的效应识别提供了方法论上的探索,也为数据驱动的生态行为融合研究提供了新的视角。

    Abstract:

    Urban green spaces provide not only critical ecological functions but also serve as essential public resources, supporting daily physical activity and promoting public health. Understanding how green space characteristics influence residents’ physical activity is crucial for improving the effectiveness of urban green infrastructure and achieving health-related planning goals. This study integrates map-based exercise trajectory data from a popular fitness app with high-resolution urban green space vector data, reconstructing approximately 65,000 resident exercise trajectories across Beijing. The analysis reveals a strong resident preference for large, spatially compact green spaces, with a non-linear, inverted U-shaped relationship between NDVI and exercise intensity, suggesting that moderate vegetation levels are most attractive. Spatial autocorrelation tests and spatial econometric models further indicate that physical activity exhibits significant spatial clustering. Local vitality in green spaces tends to influence surrounding areas through a neighborhood spillover effect. By integrating behavioral big data with fine-grained spatial analysis, this approach provides a more detailed and reliable means of capturing human-environment interactions. To further examine spatial dependence, we distinguish between spatial error and lag effects, proposing an "ecological–behavioral" positive feedback mechanism. This mechanism highlights how the active use of green spaces may jointly enhance social participation and ecological performance. Based on these findings, we propose three policy directions: (1) refining green space design and management to align with local environmental and behavioral characteristics, ensuring that interventions are context-sensitive; (2) promoting neighborhood-level coordination to leverage spatial spillovers for community engagement; and (3) developing an integrated green space network, with attention to spatial connectivity and cross-district collaboration. Collectively, these strategies?underscore?the?importance of aligning?ecological quality with human activity patterns?to achieve?healthier, more resilient cities. This research contributes a novel methodological approach to evaluating the effectiveness of urban green space and offers new insights into the integration of ecological and behavioral data for evidence-based urban planning.

    参考文献
    相似文献
    引证文献
引用本文

李劼,刘士磊,李婷伟.绿色空间环境特征对居民运动行为的影响研究 ——基于北京市运动大数据的实证分析.生态学报,,(). http://dx. doi. org/[doi]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数: