生态学报  2021, Vol. 41 Issue (13): 5408-5416

文章信息

王玉鑫, 付晓莉, 王辉民, 戴晓琴, 寇亮, 方向民
WANG Yuxin, FU Xiaoli, WANG Huimin, DAI Xiaoqin, KOU Liang, FANG Xiangmin
氮磷添加对杉木根叶分解残余物微生物群落结构及酶活性的影响
Effects of nitrogen and phosphorus additions on microbial community structure and enzyme activity in root and leaf debris of Cunninghamia lanceolata
生态学报. 2021, 41(13): 5408-5416
Acta Ecologica Sinica. 2021, 41(13): 5408-5416
http://dx.doi.org/10.5846/stxb202005111173

文章历史

收稿日期: 2020-05-11
网络出版日期: 2021-04-27
氮磷添加对杉木根叶分解残余物微生物群落结构及酶活性的影响
王玉鑫1,2 , 付晓莉1 , 王辉民1,2 , 戴晓琴1 , 寇亮1 , 方向民3     
1. 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室千烟洲生态站, 北京 100101;
2. 中国科学院大学资源与环境学院, 北京 100049;
3. 江西农业大学林学院, 南昌 330045
摘要: 为揭示根、叶分解残余物对生态系统养分循环相关过程的影响,研究了分解第3年杉木根残余物(凋R)和叶残余物(凋L)中的微生物群落结构(环丙基脂肪酸/前体结构,Cy/pre;单不饱和脂肪酸/饱和脂肪酸,Mono/sat;真菌/细菌,F/B;革兰氏阳性菌/革兰氏阴性菌,G+/G-)、酶活性(β-葡萄糖苷酶,βG;β-N-乙酰氨基葡糖苷酶,NAG;酸性磷酸酶,AP)、化学元素含量及计量比对氮磷添加的响应。结果表明:(1)与凋R相比,凋L中的Cy/pre、F/B、G+/G-低,Mono/sat高。氮磷添加对分解残余物微生物群落结构影响不显著。(2)与凋R相比,凋L中的βG和NAG活性高、βG/AP大。氮磷添加抑制了AP活性,提高了βG/NAG及βG/AP。且氮磷添加对凋R的AP活性抑制作用更强,对凋L的βG/NAG提升幅度更大。(3)分解残余物中的Mono/sat、G+/G、F/B分别与锰含量、磷/钙、氮含量正相关;AP、βG/NAG分别与氮/磷、磷/铁正相关;βG/AP、NAG、βG分别与氮/锰、磷/镁、氮/钙负相关。表明根、叶分解残余物仍可对生态系统养分循环相关过程产生不同影响,考虑分解残余物类型可提高全球变化背景下生态系统养分循环过程预报精度。
关键词: 氮磷添加    微生物群落结构    酶活性    化学计量    凋落物分解    
Effects of nitrogen and phosphorus additions on microbial community structure and enzyme activity in root and leaf debris of Cunninghamia lanceolata
WANG Yuxin1,2 , FU Xiaoli1 , WANG Huimin1,2 , DAI Xiaoqin1 , KOU Liang1 , FANG Xiangmin3     
1. Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
2. College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China;
3. School of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
Abstract: Root and leaf litters are two important litter sources in ecosystems, providing carbon sources and nutrients for microorganisms. The decompositions of root and leaf litters are highly sensitive to the environmental availability of nutrients. The simultaneous deposition of nitrogen and phosphorus is one of the most critical challenges in ecosystems worldwide. Changes of nitrogen and phosphorus inputs can affect both the decomposition rates of root and leaf litter and other responses of the ecosystem. The long-term patterns of mass loss during leaf and root litter decomposition are well documented, but the responses of microbial community structure and enzyme activity in root and leaf debris to the simultaneous deposition of exogenous nitrogen and phosphorus are not known. Understanding the influence of simultaneous inputs of exogenous nitrogen and phosphorus on the microbial community structure and enzyme activity in root and leaf debris can help us to precisely predict shifts in ecosystem processes in nitrogen and phosphorus deposition enriched regions. We investigated the responses of microbial community structure (cyclopropyl fatty acids/precursor structure, Cy/pre; monounsaturated fatty acids/saturated fatty acid, Mono/sat; fungus/bacteria, F/B; Gram-positive bacteria/Gram-negative bacteria, G+/G-), enzyme activity (glucosidase, βG; β-N-Acetylglucosaminidase, NAG; acid phosphatase, AP), chemical element content and stoichiometry in root and leaf debris (3 years after decomposition) of Cunninghamia lanceolata to nitrogen and phosphorus additions. Results showed that Cy/pre, F/B, G+/G- were lower and Mono/sat was higher in the leaf debris than those in the root debris. However, nitrogen and phosphorus additions had no significant effect on the microbial community structure of the debris. The leaf debris had higher βG and NAG activity and βG/AP compared with the root debris. Nitrogen and phosphorus additions decreased the AP activity and increased βG/NAG and βG/AP. Moreover, nitrogen and phosphorus additions resulted in a greater decrease in root debris' AP activity but a more significant increase in βG/NAG of leaf debris. Multiple stepwise regression showed that Mono/sat, G+/G- and F/B positively correlated with manganese content, phosphorus/calcium, and nitrogen content, respectively. AP and βG/NAG were positively correlated with nitrogen/phosphorus and phosphorus/iron, respectively; and βG/AP, NAG, and βG were negatively correlated with nitrogen/manganese, phosphorus/magnesium, and nitrogen/calcium, respectively. Our results found that the effects of nitrogen and phosphorus additions on microbial community structure and enzyme activity were generally inconsistent between root and leaf debris, thereby underlining that leaf and root litters need to be considered separately when evaluating the response of decomposers to their substrates in the context of global change to improve the prediction accuracy of ecosystem nutrient cycling processes.
Key Words: nitrogen and phosphorus additions    microbial community structure    enzyme activity    stoichiometry    litter decomposition    

根、叶凋落物进入土壤后为微生物提供碳源和营养[1], 其分解过程共同驱动着生态系统碳排放及养分循环[2]。但根、叶凋落物输入量及分解过程差异巨大。森林生态系统中, 根、叶凋落物年输入量之比在0.17—7.83之间[3]。根凋落物分解慢于叶凋落物, 且分解至恒定时残余率比叶凋落物高[4]。造成这种差异的原因主要有二方面。一是根叶凋落物化学属性不同。根中相对难分解的碳(C)组分比叶中的高2—3倍, 而叶凋落物具有更多易分解的非结构性碳水化合物等C组分[5-6]。难分解C组分高通常伴有较高的真菌生物量, 因为真菌具有分解复杂化合物(如木质素)的酶系统。而易分解C组分则刺激特定细菌生长[7]。二是根叶凋落物分解时所处的微环境不同。叶凋落物累积在土壤表面, 更易受降雨的溅蚀与冲刷。根凋落物在土壤内, 而大多数真菌(F)分解者需要氧气进行代谢或作为胞外酶的底物, 需氧真菌群落在土壤内常受低氧胁迫[8]。值得注意的是, 微生物群落结构及胞外酶特征不但参与、影响凋落物分解过程, 且可指示生态系统对环境变化的响应与适应性, 其本身也具有重要的生态学意义。如, 微生物群落结构参数及酶活性比常用来表征养分循环可持续状态[9]、微生物受环境pH胁迫和碳源限制状况[10]、微生物获取养分的投入策略等[11]

全球尺度的凋落物长期分解试验整合分析表明:凋落物完全分解需要10年以上的时间;分解2年后, 针叶林中根、叶凋落物残余率分别约为59%和54%[12]。这些大量的根、叶分解残余物仍是生态系统凋落物层和土壤碳库的重要组成部分, 影响着生态系统养分循环过程, 且根叶分解残余物间化学属性仍存在显著差异。如, 道格拉斯冷杉(Pseudotsuga menziesii)凋落物分解实验表明:分解2年后叶分解残余物中的碳氮比(C/N)、氮磷比(N/P)分别为26和19, 而根分解残余物中的C/N、N/P分别为32和16[13]。根叶分解残余物化学属性差异预示着:根叶分解残余物的微生物群落结构、酶活性特征及其对环境变化的响应可能不同。但野外分解试验时布设的初始凋落物质量通常较小(根凋落物为1—2 g, 叶凋落物为1—10 g)[6, 14-15], 导致分解后期凋落物袋中的残余物质量十分有限, 限制了对上述假设的科学验证。

当前, 氮、磷沉降是全球变化研究中的重要因子。我国亚热带森林生态系统同时受氮沉降和磷沉降影响[16]。因此, 本研究以亚热带地区杉木(Cunninghamia lanceolata)林为对象, 依托氮磷添加试验平台, 布设凋落物分解试验时加大初始凋落物质量, 研究了分解3年后根(凋R)、叶残余物(凋L)中的元素含量、化学计量比、微生物群落结构、酶活性, 以探究根、叶分解残余物微生物群落结构及酶活性特征对NP添加的响应。我们假设:(1)分解3年后凋R与凋L间养分、微生物群落结构、酶活性仍然存在差异;(2)与受真菌偏好的凋R相比, NP添加对受细菌偏好的凋L中的微生物群落结构及酶活性影响更大, 因为生长较慢的真菌比细菌更能抵抗干扰[17]

1 材料与方法 1.1 试验地概况

杉木人工林氮磷添加试验平台位于中国科学院千烟洲森林生态系统观测研究站(115°13′04″E, 26°44′52″N, 海拔102 m)。该站点主要土壤类型为红壤, 属于典型强淋溶土(FAO, 2014), 土壤为粉质粘土, pH为4.3[18]。试验区属于中亚热带季风气候, 年均气温和降水量分别为17.9℃和1471.2 mm。2011年11月在1998年种植的二代杉木纯林中建立了氮磷添加试验平台。该平台包括CK(对照)和100 kg hm-2 a-1氮+50 kg hm-2 a-1磷(NP添加)两个处理, 采用完全区组试验设计, 每个处理6个样方重复(20 m×20 m)。其中, 氮、磷肥分别以NH 4NO3和NaH 2PO4形式施加, 将肥料溶于水, 人工均匀喷洒;CK处理人工喷洒等量的水。2011年, 样地林龄为14 a, 密度约为2137棵/hm2, 平均高度约为8.94 m, 胸径约为10.3 cm[19]

1.2 试验设计及样品采集

2012年8月, 在CK和NP添加处理中各选取3个样方布设凋落物分解试验。每个样方分别划定2个3×5 m的子样方, 去除凋落物层和腐殖质层。并在每个子样方里步设叶凋落物(C含量为463.6 g/kg;N含量为8.4 g/kg;C/N比为55.19)和根凋落物(C含量为468.3 g/kg;N含量为12.8 g/kg;C/N比为36.59)两个处理。其中, 叶凋落物处理是将含250 g干重的叶凋落物袋置于PVC管(内径30 cm, 长度40 cm)内的土壤表层;根凋落物处理是将含50 g干重的根凋落物袋置于PVC管内土壤的5 cm深处。每种处理有6个PVC管重复。根、叶凋落物均采自未施肥杉木人工林。由于尚未分解的死根很难获取, 根凋落物是用0—10cm土层中的活细根(直径≤2 mm)代替。杉木的小枝和叶一起掉落, 所以叶凋落物包含小枝。杉木人工林叶凋落物的年输入量约为0—10 cm土层中根凋落物年输入量的5倍[20], 因此, 叶凋落物干重与根凋落物干重比设置为5∶1。凋落物尼龙网袋尺寸为30 cm×30 cm。杉木叶凋落物、根凋落物的本底化学属性差异显著:根凋落物的N、P、钾(K)、镁(Mg)、铁(Fe)、铝(Al)含量显著高于叶凋落物;但根凋落物的钙(Ca)、锰(Mn)含量显著低于叶凋落物。

于2015年10月(即约分解3年后)采集凋L和凋R。部分样品4℃冰箱保存, 部分样品风干, 用于后续分析。

1.3 测定方法

采用PLFA法检测微生物群落结构。用i14:0, i15:0, a15:0, i16:0, i17:0, a17:0, 16:1ω7cis, 16:1ω9cis, 17:1ω7cis, 18:1w5c, 18:1ω7cis, cy17:0, cy19:0表示细菌(B);18:3ω6cis, 18:2ω6cis, 18:2ω9cis, 18:1ω9cis表示真菌(F);16:1ω7cis, 16:1ω9cis, 17:1ω7cis, 18:1w5c, 18:1ω7cis, cy17:0, cy19:0表示革兰氏阴性菌(G-);i14:0, i15:0, a15:0, i16:0, i17:0, a17:0表示革兰氏阳性菌(G+)[21]。同时计算环丙基脂肪酸与前体结构的比值(Cy/pre)、单不饱和脂肪酸与饱和脂肪酸的比值(Mono/sat)[22]、G+/G-及F/B。Cy/pre越大表示微生物受环境pH胁迫越大[10], Mono/sat升高表示微生物受环境碳源限制加剧[11], G+/G-升高表示底物中较难利用的、复杂C组分比例变高[23], F/B升高表示养分循环更可持续、更保守[9]

根据Allison[24]等人描述的方法测定β-葡萄糖苷酶(βG), N-乙酰氨基葡萄糖苷酶(NAG)和酸性磷酸酶(AP)的活性。酶活性比率(βG/NAG、βG/AP)可代表微生物获取C, N及P的相对投资。βG/NAG较低表明相对于获取C, 微生物对获取N的投入更大;βG/AP较低表明相对于获取C, 微生物对获取P的投入更大[25]

全C和全N采用元素分析仪(Vario Max CN, Elementar, Germany)测定。P、K、Ca、Mg、Mn、Fe、Al元素含量使用高压微波消解/萃取仪(ETHOS-T, MILESTONE, Italy)及电感耦合等离子体原子发射光谱仪(ICP-AE, Thermo Elemental, United States)进行测定。

1.4 数据处理与分析

用双因素方差分析(Two-way ANOVA)研究凋落物类型及氮磷添加对分解残余物中微生物群落结构、酶活性及化学性质的影响, 并用Bonferroni法对不同处理凋落物间的差异性进行多重比较。用多元逐步回归分析探讨分解残余物中的微生物群落、酶活性参数与化学元素含量及计量比间的关系。上述分析用SPSS statistics 21.0实现, 由Origin 2017制图。

2 结果与分析 2.1 分解残余物的化学属性

氮磷添加和凋落物类型对分解残余物化学属性影响显著(表 1)。CK处理下, 凋R的N、Al含量、N/Ca、N/Mg、N/Mn、P/Ca、P/Mg、P/Mn高于凋L, 而Ca、Mn含量低于凋L。氮磷添加对残余物P、Ca含量、C/N、N/P、N/Mn、P/K、P/Ca、P/Mg的主效应显著, 氮磷添加显著增大残余物P含量, 降低N/P。氮磷添加和凋落物类型对C、P、Ca、Mn含量、N/P、N/Mg、N/Mn、P/Ca存在交互效应。氮磷添加处理下, 凋R的N、P、K、Fe、Al、N/Ca、P/Ca、P/Mn含量高于凋L, 而凋R的Ca、Mn、C/N、N/Al、P/Al含量低于凋L

表 1 氮磷添加和凋落物类型对分解残余物化学属性(平均值±标准误)影响的方差分析结果 Table 1 ANOVA results (P value) of the effects of nitrogen and phosphorus additions and litter types on debris′ chemical properties (means±SE) in the third year of decomposition
化学属性
Chemical properties
对照
CK
氮磷添加
NP
施肥处理
Fertilization treatment
凋落物类型
Litter type
施肥处理×凋落物类型
Fertilization treatment×Litter type
R
Root litter
L
Leaf litter
R
Root litter
L
Leaf litter
P P P
碳C/(g/kg) 429.34±18.81a 382.83±27.55a 417.71±10.04a 435.23±8.66a 0.269 0.429 < 0.001
氮N/(g/kg) 20.07±0.51a 16.15±0.71b 18.71±0.30a 16.66±0.32b 0.400 < 0.001 0.071
磷P/(g/kg) 0.83±0.05c 0.79±0.04c 2.09±0.07a 1.21±0.07b < 0.001 < 0.001 < 0.001
钾K/(g/kg) 1.80±0.62b 1.25±0.18b 2.30±0.21a 1.03±0.06b 0.692 0.015 0.294
钙Ca/(g/kg) 1.82±0.33c 16.96±1.84a 1.66±0.14c 11.09±1.19b 0.013 < 0.001 0.018
镁Mg/(g/kg) 0.63±0.19b 0.83±0.03ab 0.91±0.09a 0.73±0.06ab 0.427 0.883 0.095
锰Mn/(g/kg) 0.09±0.02b 3.76±0.50a 0.28±0.07b 2.65±0.34a 0.142 < 0.001 0.044
铁Fe/(g/kg) 7.73±2.57ab 5.30±1.07b 9.69±0.78a 3.85±0.34b 0.860 0.010 0.256
铝Al/(g/kg) 15.49±3.34a 5.23±1.02b 18.96±1.58a 4.43±0.38b 0.495 < 0.001 0.280
碳氮比C/N 21.36±0.59a 23.56±0.89ab 22.34±0.59b 26.12±0.20a 0.010 < 0.001 0.215
氮磷比N/P 24.74±1.98a 20.66±1.62a 9.02±0.38b 13.99±0.87b < 0.001 0.746 0.003
氮钾比N/K 18.86±5.45a 14.39±2.21a 8.59±1.00a 16.61±1.17a 0.200 0.566 0.053
氮钙比N/Ca 12.98±2.24a 1.00±0.10b 11.61±0.86a 1.61±0.21b 0.753 < 0.001 0.422
氮镁比N/Mg 46.57±10.66a 19.67±1.52b 21.80±2.37b 23.56±1.87b 0.077 0.036 0.019
氮锰比N/Mn 295.54±80.74a 4.66±0.61b 94.02±26.28b 6.83±0.84b 0.029 0.000 0.026
氮铁比N/Fe 3.97±0.96a 3.75±0.78a 2.00±0.18a 4.54±0.51a 0.397 0.102 0.055
氮铝比N/Al 1.65±0.38ab 3.73±0.72a 1.03±0.10b 3.95±0.46a 0.677 < 0.001 0.376
磷钾比P/K 0.70±0.16ab 0.68±0.08b 0.96±0.12ab 1.21±0.11a 0.004 0.357 0.286
磷钙比P/Ca 0.52±0.08b 0.05±0.01c 1.32±0.16a 0.11±0.01c < 0.001 < 0.001 < 0.001
磷镁比P/Mg 1.77±0.31a 0.97±0.08b 2.45±0.30a 1.68±0.08ab 0.006 0.002 0.937
磷锰比P/Mn 11.35±2.38a 0.22±0.02b 11.06±3.69a 0.51±0.09b 0.998 < 0.001 0.896
磷铁比P/Fe 0.15±0.03b 0.17±0.03b 0.22±0.02ab 0.34±0.05a 0.269 0.429 0.234
磷铝比P/Al 0.06±0.01b 0.18±0.03ab 0.11±0.01b 0.29±0.05a 0.400 < 0.001 0.274
不同字母表示处理间存在显著差异(Bonferroni多重比较检验, P < 0.0083); CK:对照Control;NP:氮磷添加Nitrogen and phosphorus additions;凋R:根凋落物Root litter;凋L:叶凋落物Leaf litter;C:碳Carbon;N:氮Nitrogen;P:磷Phosphorus;K:钾Potassium;Ca:钙Calcium;Mg:镁Magnesium;Mn:锰Manganese;Fe:铁Iron;Al:铝Aluminum;C/N:碳氮比Carbon/nitrogen;N/P:氮磷比Nitrogen/phosphorus;N/K:氮钾比Nitrogen/potassium;N/Ca:氮钙比Nitrogen/calcium;N/Mg:氮镁比Nitrogen/magnesium;N/Mn:氮锰比Nitrogen/manganese;N/Fe:氮铁比Nitrogen/iron;N/Al:氮铝比Nitrogen/aluminum;P/K:磷钾比Phosphorus/potassium;P/Ca:磷钙比Phosphorus/calcium;P/Mg:磷镁比Phosphorus/magnesium;P/Mn:磷锰比Phosphorus/manganese;P/Fe:磷铁比Phosphorus/iron;P/Al:磷铝比Phosphorus/aluminum
2.2 分解残余物中的微生物群落结构和酶活性特征

凋落物类型对分解残余物微生物群落结构影响显著, 氮磷添加对分解残余物微生物群落结构无主效应, 凋落物类型和氮磷添加对分解残余物微生物群落结构无交互作用(图 1)。总体而言, 与凋R相比, 凋L中的cy/pre、F/B、G+/G-低, 而Mono/sat高。虽然氮磷添加对凋R中的微生物群落结构无影响, 但显著提高了凋L中的Cy/pre。

图 1 氮磷添加和凋落物类型对分解残余物中微生物群落结构的影响 Fig. 1 Responses of the microbial community structure in debris to nitrogen and phosphorus additions and litter types 图中数据为平均值±标准误(n=6);CK:对照Control;NP:氮磷添加Nitrogen and phosphorus additions;NS:不显著Not significant;不同字母表示处理间存在显著差异(Bonferroni多重比较检验, P < 0.0083)

凋落物类型和氮磷添加均对分解残余物中的微生物酶活性特征有影响, 凋落物类型和氮磷添加对分解残余物微生物酶活性特征无交互作用(图 2)。凋落物类型对βG、NAG及βG/AP有主效应。与凋R相比, 凋L中的βG和NAG活性高, βG/AP大。氮磷添加对AP、βG/NAG及βG/AP有主效应。与CK相比, 氮磷添加抑制了AP活性, 提高了βG/NAG及βG/AP。其中, 氮磷添加对凋R的AP活性抑制作用更强, 对凋L的βG/NAG提升幅度更大。

图 2 氮磷添加及凋落物类型对分解残余物中水解酶酶活性及酶活性计量的影响 Fig. 2 Responses of hydrolytic enzymes and related enzymatic stoichiometry in debris to nitrogen and phosphorus additions and litter types 图中数据为平均值±标准误(n=6);不同字母表示处理间存在显著差异(Bonferroni多重比较检验, P < 0.0083)
2.3 微生物群落结构和酶活性特征与分解残余物化学属性的关联性

对微生物群落结构参数而言, 分解残余物中的Mono/sat、G+/G、F/B分别与分解残余物中Mn含量、P/Ca、N含量正相关(表 2)。对酶活性参数而言, 分解残余物中的AP、βG/NAG分别与分解残余物N/P、P/Fe正相关;βG/AP、NAG、βG分别与分解残余物N/Mn、P/Mg、N/Ca负相关(表 2)。

表 2 微生物群落结构及酶活性相关参数与化学性质的多元逐步回归分析 Table 2 Multiple stepwise regression results for the relationships between the microbial community structure and enzyme activity parameters and chemical properties
类别
Type
微生物群落/酶活性参数
Microbial community/Enzyme activity parameter
自变量
Independent variable
标准系数
Standard coefficient
显著性
Sig.
解释度/%
Interpretation
微生物群落结构 Mono/sat Mn 0.673 < 0.001 45.3
Microbial community structure G+/G- P/Ca 0.594 0.003 35.2
F/B N 0.503 0.012 25.3
酶活性 βG N/Ca -0.604 0.002 36.5
Enzyme activity NAG P/Mg -0.660 0.000 43.6
AP N/P 0.632 0.001 39.9
βG/AP N/Mn -0.558 0.005 31.1
βG/NAG P/Fe 0.433 0.035 18.7
Mono/sat:单不饱和脂肪酸/饱和脂肪酸Monounsaturated fatty acids/saturated fatty acids;G+/G-:革兰氏阳性菌/革兰氏阴性菌Gram-positive bacteria/Gram-negative bacteria;F/B:真菌/细菌Fungal/bacteria;βG:β-葡萄糖苷酶β-glucosidase;NAG:β-N-乙酰氨基葡糖苷酶β-N-Acetylglucosaminidase;AP:酸性磷酸酶acid phosphatase;βG/AP:β-葡萄糖苷酶/酸性磷酸酶β-glucosidase/acid phosphatase;βG/NAG:β-葡萄糖苷酶/β-N-乙酰氨基葡糖苷酶β-glucosidase/β-N-Acetylglucosaminidase
3 讨论 3.1 根叶分解残余物中微生物群落结构及酶属性差异

凋落物基质质量塑造着微生物群落结构和酶活性特征[26]。C/N是反应凋落物基质质量的典型指标[12]。在C/N高的基质中, 微生物往往生长缓慢、酶活性低, 但酶系统复杂、效率高[27]。另外基质化学组分会随分解时间发生改变, 导致基质中的微生物群落结构及酶活性也随分解时间发生改变[26]

本研究中, 分解3年后凋R与凋L间的微生物群落结构、酶属性仍存在显著差异, 且与残余物的化学属性密切相关(表 2), 这支持了我们的假设一。与凋R相比, 凋L的P/Ca和N含量低, 导致G+/G-、F/B低;而Mn含量、Mono/sat高(图 1)。该结果说明:与凋R相比, 尽管凋L中Mn含量高有利于碳的分解[28], 但凋L微生物总的碳源限制性高(Mono/sat高)、养分循环可持续性低(F/B低)。此外, 凋R微生物受pH胁迫大(Cy/pre高)。这可能是因为:该区土壤为酸性、pH值低, 凋R与土壤的接触面积大于凋L, 因此受pH胁迫较高[29];且凋L中Ca元素的富集也有利于缓解pH胁迫[30]

L的N/Ca和P/Mg低于凋R(表 1), 且分解残余物中的βG和NAG分别与N/Ca和P/Mg显著负相关(表 2), 故凋L的βG和NAG高于凋R(图 2)。凋L的βG和NAG高可能与凋L易分解C源比例大(G+/G-低)有关。凋L中的N/Mn低于凋R, 且分解残余物中的βG/AP与N/Mn显著负相关, 故凋L中的βG/AP高于凋R。此外, 酸性胁迫可降低基质中的βG/AP[25], 凋L微生物受pH胁迫小也会导致其βG/AP较高。凋L中的βG/AP高说明凋L中的微生物相对于获取P, 对获取C的投入更大[31], 这与凋L微生物受C限制更大(Mono/sat高)的结果一致。

3.2 氮磷添加对分解残余物中微生物群落结构和酶活性的影响

本研究中, 氮磷同时添加对分解残余物中微生物群落结构参数无主效应(图 1)。与本研究结果相似, Ma等研究发现NP添加第5年对土壤微生物群落结构无显著影响。微生物群落会随分解阶段而演替[32]。分解初期, 对易分解C组分偏好的快速生长的r-策略微生物或共生菌为主导;分解后期, 微生物群落逐渐被生长较慢的k-策略微生物取代, 这类微生物具有相对复杂高效的酶系统, 可以在低营养条件下分解更多的顽固性化合物[33]。可见, 分解第3年, 根叶残余物中的微生物群落结构渐趋稳定。氮磷添加对微生物群落结构无主效应的原因也可能是由于N、P的激发效应多发生在微生物C限制较低的环境中[34]。此外, 采用以碳源利用为基础的BIOLOG微孔板技术或高通量测序技术也许更能细致地发现微生物群落结构与碳源间的关系[35-36], 这需进一步探究。

值得注意的是:氮磷添加显著提高了叶残余物的Cy/pre, 但未改变根残余物的Cy/pre。这一方面说明氮磷添加增加了叶残余物中微生物的pH胁迫, 另一方面也表明根叶残余物所处位置的差异使叶残余物更易受外界干扰影响[37]

氮磷同时添加显著抑制了分解残余物中AP活性, 提高了分解残余物中的βG/NAG和βG/AP(图 2)。Jiang等研究发现NP添加1年即可导致凋落物AP活性显著降低[38]。值得注意的是, 氮磷同时添加对不同质量基质酶活性的影响有别于单独添加N[39], 因为P添加会减轻基质中微生物的P限制, 使微生物获取P的需求减小。氮磷同时添加导致AP活性下降可能是由于:(1)磷添加造成的无机磷酸盐过量, 减少了微生物通过分泌胞外酶获取P的需要[40], 抑制了AP活性;(2)氮添加导致NH4+过量, 引发了“氨代谢物抑制”现象, 进而抑制了AP的合成[41]。有意思的是, 我们发现氮磷添加对凋R的AP活性抑制性更强于凋L(图 2), 这与我们的假设二相悖。可能的原因是:凋R在土里, 土壤本身的N、P含量加剧了上述抑制作用。此外, 我们发现NP添加对凋L的βG/NAG提升幅度更大, 这表明:与凋R相比, 凋L中的微生物在NP添加之后对C的相对投入更大, 相对地加剧了叶分解残余物中微生物的C限制。

本研究采用50倍于常量的初始凋落物质量, 且凋落分解试验需要多次取样, 而根系的采集耗时费力。因此, 针对研究区存在氮磷同时沉降这一问题, 本研究仅解析了NP同时添加对凋落物分解残余物微生物群落及酶活性的影响。未来研究可相对地减少初始分解质量、增设单独氮添加和单独磷添加处理, 以期更好地揭示氮、磷外源养分各自输入对凋落物分解残余物生物学特征的影响。

4 结论

杉木林的根叶分解试验表明:分解3年后, 凋R与凋L间养分、微生物群落结构、酶活性仍然存在差异, 表明根、叶分解残余物仍可对生态系统养分循环相关过程产生不同影响。与根分解残余物比, 叶分解残余物微生物受C源限制性大, 其微生物对获取C的投入增多, F/B更低;但叶分解残余物微生物受pH胁迫小。氮磷添加对分解残余物的微生物群落结构无显著影响, 但抑制了分解残余物AP的活性, 提高了βG/NAG和βG/AP, 表明外源养分输入对根叶分解残余物仍有激发效应。且氮磷添加对叶分解残余物βG/NAG的提升幅度更大, 表明亚热带地区氮磷沉降可加剧杉木林叶分解残余物中微生物的C限制, 这可能不利于分解后期杉木叶残余物养分的归还, 延长叶分解残余物在生态系统中的存留时间。

参考文献
[1]
Palviainen M, Finér L, Kurka A M, Mannerkoski H, Piirainen S, Starr M. Release of potassium, calcium, iron and aluminium from Norway spruce, Scots pine and silver birch logging residues. Plant and Soil, 2004, 259(1/2): 123-136. DOI:10.1023/B:PLSO.0000020938.78215.bd
[2]
Carter D O, Yellowlees D, Tibbett M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften, 2007, 94(1): 12-24.
[3]
Nadelhoffer K J, Raich J W. Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology, 1992, 73(4): 1139-1147. DOI:10.2307/1940664
[4]
Sun T, Hobbie S E, Berg B, Zhang H G, Wang Q K, Wang Z W, Hattenschwiler S. Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(41): 10392-10397. DOI:10.1073/pnas.1716595115
[5]
Jiang L, Kou L, Li S G. Decomposition of leaf mixtures and absorptive-root mixtures synchronously changes with deposition of nitrogen and phosphorus. Soil Biology and Biochemistry, 2019, 138: 107602. DOI:10.1016/j.soilbio.2019.107602
[6]
Xia M X, Talhelm A F, Pregitzer K S. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests. New Phytologist, 2015, 208(3): 715-726. DOI:10.1111/nph.13494
[7]
Sauvadet M, Fanin N, Chauvat M, Bertrand I. Can the comparison of above- and below-ground litter decomposition improve our understanding of bacterial and fungal successions?. Soil Biology and Biochemistry, 2019, 132: 24-27. DOI:10.1016/j.soilbio.2019.01.022
[8]
Schuur E A G. The effect of water on decomposition dynamics in mesic to Wet Hawaiian montane forests. Ecosystems, 2001, 4(3): 259-273. DOI:10.1007/s10021-001-0008-1
[9]
Strickland M S, Rousk J. Considering fungal: bacterial dominance in soils-Methods, controls, and ecosystem implications. Soil Biology and Biochemistry, 2010, 42(9): 1385-1395. DOI:10.1016/j.soilbio.2010.05.007
[10]
Moore-Kucera J, Dick R P. PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence. Microbial Ecology, 2008, 55(3): 500-511. DOI:10.1007/s00248-007-9295-1
[11]
Kaur A, Chaudhary A, Kaur A, Choudhary R, Kaushik R. Phospholipid fatty acid-A bioindicator of environment monitoring and assessment in soil ecosystem. Current Science, 2005, 89(7): 1103-1112.
[12]
Parton W, Silver W L, Burke I C, Grassens L, Harmon M E, Currie W S, King J Y, Adair E C, Brandt L A, Hart S C, Fasth B. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 2007, 315(5810): 361-364. DOI:10.1126/science.1134853
[13]
van Huysen T L, Perakis S S, Harmon M E. Decomposition drives convergence of forest litter nutrient stoichiometry following phosphorus addition. Plant and Soil, 2016, 406(1/2): 1-14. DOI:10.1007/s11104-016-2857-6
[14]
Jiang L, Kou L, Li S G. Alterations of early-stage decomposition of leaves and absorptive roots by deposition of nitrogen and phosphorus have contrasting mechanisms. Soil Biology and Biochemistry, 2018, 127: 213-222. DOI:10.1016/j.soilbio.2018.09.037
[15]
Luo D, Cheng R M, Shi Z M, Wang W X. Decomposition of leaves and fine roots in three subtropical plantations in China affected by litter substrate quality and soil microbial community. Forests, 2017, 8(11): 412. DOI:10.3390/f8110412
[16]
Gao Y, Zhou F, Ciais P, Miao C Y, Yang T, Jia Y L, Zhou X D, Klaus B B, Yang T T, Yu G R. Human activities aggravate nitrogen-deposition pollution to inland water over China. National Science Review, 2020, 7(2): 430-440. DOI:10.1093/nsr/nwz073
[17]
de Vries F T, Manning P, Tallowin J R B, Mortimer S R, Pilgrim E S, Harrison K A, Hobbs P J, Quirk H, Shipley B, Cornelissen J H C. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecology Letters, 2012, 15(11): 1230-1239. DOI:10.1111/j.1461-0248.2012.01844.x
[18]
Li Q R, Tian Y Q, Zhang X Y, Xu X L, Wang H M, Kuzyakov Y. Labile carbon and nitrogen additions affect soil organic matter decomposition more strongly than temperature. Applied Soil Ecology, 2017, 114: 152-160. DOI:10.1016/j.apsoil.2017.01.009
[19]
Chen F S, Niklas K J, Liu Y, Fang X M, Wan S Z, Wang H M. Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age. Tree Physiology, 2015, 35(10): 1106-1117. DOI:10.1093/treephys/tpv076
[20]
Yang Y S, Guo J F, Chen G S, Yin Y F, Gao R, Lin C F. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant and Soil, 2009, 323(1/2): 153-162.
[21]
Šnajdr J, Valášková V, Merhautová V, Herinková J, Cajthaml T, Baldrian P. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biology and Biochemistry, 2008, 40(9): 2068-2075. DOI:10.1016/j.soilbio.2008.01.015
[22]
Thoms C, Gattinger A, Jacob M, Thomas F M, Gleixner G. Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biology and Biochemistry, 2010, 42(9): 1558-1565. DOI:10.1016/j.soilbio.2010.05.030
[23]
Fanin N, Kardol P, Farrell M, Nilsson M C, Gundale M J, Wardle D A. The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils. Soil Biology and Biochemistry, 2019, 128: 111-114. DOI:10.1016/j.soilbio.2018.10.010
[24]
German D P, Weintraub M N, Grandy A S, Lauber C L, Rinkes Z L, Allison S D. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry, 2011, 43(7): 1387-1397. DOI:10.1016/j.soilbio.2011.03.017
[25]
Waring B G, Weintraub S R, Sinsabaugh R L. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry, 2014, 117(1): 101-113. DOI:10.1007/s10533-013-9849-x
[26]
Šnajdr J, Cajthaml T, Valášková V, Merhautová V, Petránková M, Spetz P, Leppänen K, Baldrian P. Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiology Ecology, 2011, 75(2): 291-303. DOI:10.1111/j.1574-6941.2010.00999.x
[27]
Amin B A Z, Chabbert B, Moorhead D, Bertrand I. Impact of fine litter chemistry on lignocellulolytic enzyme efficiency during decomposition of maize leaf and root in soil. Biogeochemistry, 2014, 117(1): 169-183. DOI:10.1007/s10533-013-9856-y
[28]
Perez J, Jeffries T W. Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Applied and Environmental Microbiology, 1992, 58(8): 2402-2409. DOI:10.1128/aem.58.8.2402-2409.1992
[29]
Bååth E, Anderson T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry, 2003, 35(7): 955-963. DOI:10.1016/S0038-0717(03)00154-8
[30]
Ma C G, Xiong Y M, Li L, Guo D L. Root and leaf decomposition become decoupled over time: implications for below- and above-ground relationships. Functional Ecology, 2016, 30(7): 1239-1246. DOI:10.1111/1365-2435.12619
[31]
Saiya-Cork K R, Sinsabaugh R L, Zak D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 2002, 34(9): 1309-1315. DOI:10.1016/S0038-0717(02)00074-3
[32]
Trevathan-Tackett S M, Jeffries T C, Macreadie P I, Manojlovic B, Ralph P. Long-term decomposition captures key steps in microbial breakdown of seagrass litter. Science of the Total Environment, 2020, 705: 135806. DOI:10.1016/j.scitotenv.2019.135806
[33]
Fierer N, Bradford M A, Jackson R B. Toward an ecological classification of soil bacteria. Ecology, 2007, 88(6): 1354-1364. DOI:10.1890/05-1839
[34]
Barantal S, Schimann H, Fromin N, Hättenschwiler S. Nutrient and carbon limitation on decomposition in an Amazonian Moist forest. Ecosystems, 2012, 15(7): 1039-1052. DOI:10.1007/s10021-012-9564-9
[35]
Widmer F, Fließbach A, Laczkó E, Schulze-Aurich J, Zeyer J. Assessing soil biological characteristics: a comparison of bulk soil community DNA-, PLFA-, and BiologTM-analyses. Soil Biology and Biochemistry, 2001, 33(7/8): 1029-1036.
[36]
刁婵, 鲁显楷, 田静, 张永清, 莫江明, 于贵瑞. 长期氮添加对亚热带森林土壤微生物碳源代谢多样性的影响. 生态学报, 2019, 39(18): 6622-6630.
[37]
张秀兰, 王方超, 方向民, 何平, 张宇飞, 陈伏生, 王辉民. 亚热带杉木林土壤有机碳及其活性组分对氮磷添加的响应. 应用生态学报, 2017, 28(2): 449-455.
[38]
Ma S H, Chen G P, Tian D, Du E Z, Xiao W, Jiang L, Zhou Z, Zhu J L, He H B, Zhu B, Fang J Y. Effects of seven-year nitrogen and phosphorus additions on soil microbial community structures and residues in a tropical forest in Hainan Island, China. Geoderma, 2020, 361: 114034. DOI:10.1016/j.geoderma.2019.114034
[39]
施瑶, 王忠强, 张心昱, 孙晓敏, 刘希玉, 何念鹏, 庾强. 氮磷添加对内蒙古温带典型草原土壤微生物群落结构的影响. 生态学报, 2014, 34(17): 4943-4949.
[40]
Sinsabaugh R L, Follstad Shah J J. Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics, 2012, 43: 313-343. DOI:10.1146/annurev-ecolsys-071112-124414
[41]
Keyser P, Kirk T K, Zeikus J G. Ligninolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. Journal of Bacteriology, 1978, 135(3): 790-797. DOI:10.1128/jb.135.3.790-797.1978