文章信息
- 张同文, 袁玉江, 魏文寿, 张瑞波, 喻树龙, 陈峰, 尚华明, 秦莉
- ZHANG Tongwen, YUAN Yujiang, WEI Wenshou, ZHANG Ruibo, YU Shulong, CHEN Feng, SHANG Huaming, QIN Li
- 开都河流域天山桦树轮宽度年表的建立及其气候响应
- Development of the tree-ring width chronology of Betula tianschanica for the Kaiduhe River watershed and its climate response
- 生态学报, 2015, 35(9): 3034-3042
- Acta Ecologica Sinica, 2015, 35(9): 3034-3042
- http://dx.doi.org/10.5846/stxb201306111650
-
文章历史
- 收稿日期:2013-6-11
- 修订日期:2014-12-22
全球变化是当今热点问题,受到各国政府和科学界的普遍关心与重视。树木年轮作为研究全球变化的重要代用资料之一,以其定年准确、连续性强、分辨率高、重建精度好以及地域分布广等特点,在重建历史时期气候变化研究中得到了普遍应用[1, 2, 3, 4, 5]。相比于针叶树种,以某些阔叶树种为对象,特别是基于全球分布广泛的桦木树种所开展的树轮气候学研究还相对较少[6, 7, 8, 9, 10, 11]。
Kuivinen和Lawson利用采集自格陵兰岛南部的35棵欧洲桦(Betula pubescens)树芯样本建立了长度为102a的树轮宽度年表,并发现其树木生长对气候变化有显著的响应[12]。根据Karlsson等对瑞典北部Tornetrsk湖地区欧洲桦树轮宽度的研究显示,较高的5—7月温度将有利于宽轮的形成[13]。通过分析生长在冰岛北部的欧洲桦与气候要素间的关系,Levani c ˇ 和Eggertsson发现在1930—2002年间,较高的夏季温度和较大的积雪场会导致宽轮的产生,而较低的夏季温度和较干的冬季会导致窄轮的产生[14]。Takahashi等分析了位于日本中部的岳桦(Betula ermanii)树轮宽度与气象要素间的相关,结果表明生长季6—8月份的温度与其径向生长正相关[15]。在国内,Yu等研究证明位于长白山树线的岳桦,其径向生长与生长季前温度呈显著正相关的同时,还受上年冬季和当年春季的降水的影响[16]。随后在长白山海拔较高处(~2000 m a.s.l.)的树木生长气候响应分析结果却显示,岳桦的树轮宽度与当年3月温度呈显著负相关,与当年7月的温度呈显著正相关,并与上年6月降水量呈显著正相关。以上不同的响应结果被解释为岳桦本身生理活动状况和环境差异共同作用的结果[17]。
天山桦(Betula tianschanica),一般树高为4—12 m,树皮呈淡黄褐色或黄白色,偶有红褐色,成层剥裂,枝条呈灰褐色或暗褐色。该树种喜光耐寒,对气候、土壤适应性强,生长在海拔1300—2500m的林缘、疏林地或者混交林中,主要分布在中亚天山山区,是树木年轮气候学研究的理想对象。但到目前为止,涉及该树种的树轮气候学研究成果还十分有限。因此,本文开展的天山桦树轮年表研制及其对气候变化响应的研究,一方面将有助于我国西北地区树轮资料库的发展与完善;另一方面还将为今后基于该树种的历史气候重建工作打下基础。
1 资料与方法 1.1 采样概况采样点位于开都河中游山区的哈尔哈提沟(后文使用HEX表示),采集时间为2011年8月9日,位置为42°26.14′ N,84°56.76′ E,海拔在2300—2400 m,坡向为N,坡度在5—30°,树木郁闭度为0.2。采样区域为薄层土,数据来自联合国粮食与农业组织(Food and Agriculture Organization)发布的世界土壤数据库v1.2版(http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database)。采样时,挑选天山桦纯林进行样本采集。为保证树芯样本所含气候信息的一致性,采集树木的垂直高度差被控制在100 m。严格选择了树木生长的立地条件,避开了那些可能受到各种干扰以及发生病腐的树木。每株样树采集2个树芯样本(生长锥口径为5.15 mm),共采集了20株样树,40个树芯样本(图 1)。
![]() |
图 1 研究区域树轮采样点及附近气象站位置 Fig.1 Location of the tree-ring sampling site in the study area and the meteorological station |
按照树木年轮分析的基本流程[18],对树芯样本进行干燥、固定、打磨,并在显微镜下目测定年及标记,再使用精度为0.001 mm的树轮宽度测量系统(Velmex Measuring System)测量所有树芯样本。使用国际树木年轮数据库的COFECHA交叉定年质量控制程序[19]对年轮宽度数据进行交叉定年检验。根据COFECHA程序的运行结果,剔除了HEX采样点中与主序列相关较低的5条子序列(来自3棵样树)。通过分析树芯样本发生缺轮的情况,结果表明该采样点树芯样本在20个年份,共存在78个缺轮,缺轮率达2.325%。
使用国际树木年轮数据库的ARSTAN树轮年表研制程序[20]对已完成交叉定年的树轮宽度数据进行树轮年表研制。采用较为保守的负指数曲线进行树木生长趋势拟合,再用双权重平均法将去除生长趋势后的序列合并成为树轮宽度指数序列,最终建立基于树轮宽度的标准化年表、差值年表和自回归年表。为了更好地保留年表的低频气候信息,标准化年表被用于随后的研究中。表中列出了树轮年表的特征参数和公共区间(1920—2000年)分析结果。使用样本总体代表性来确定年表的可靠长度[21]。本研究取0.85为阈限值,则HEX年表的可靠长度为1910—2011年,共102年(图 2,表 1)。
![]() |
图 2 树轮宽度年表(细线)和样本量(虚线);EPS(粗线)和Rbar(细线)值,虚线代表EPS=0.85 Fig.2 Tree-ring width chronology index (solid line) and the sample depth (dash line); the curves of running EPS (thick line) and Rbar (thin line),the dash line shows EPS=0.85 |
统计量 Statistic | 哈尔哈提沟 HEX | 统计量 Statistic | 哈尔哈提沟 HEX |
平均指数 Mean | 0.96 | 平均树内相关 Mean correlation within a tree | 0.79 |
标准差 Standard deviation | 0.35 | 平均树间相关 Mean correlation between trees | 0.29 |
平均敏感度 Mean sensitivity | 0.32 | 信噪比 Signal-to-noise ratio | 5.93 |
一阶自相关 First-order autocorrelation | 0.49 | 第一主成分方差解释量 Variance in first eigenvector | 38.8% |
序列平均相关 Mean correlation between all series | 0.31 | 样本总体代表性 Expressed population signal | 0.86 |
EPS > 0.85的年份 The year of EPS > 0.85 | 1910 |
本文选择焉耆气象站(42°05′ N,86°34′ E;海拔1057.2 m)1952—2011年,共60a的气象资料进行树木生长气候响应分析(资料来自中国气象科学数据共享服务网:http://cdc.cma.gov.cn)。通过分析焉耆气象站多年月降水量和月平均气温的变化情况,发现这一地区气候变化具有雨热同季的特点(图 3)。年内高温期为6至8月,以7月为最高;降水量年内变化呈单峰型,降水也主要集中在6至8月,占全年降水总量的58%,其中7月降水量最多。从长期变化来看,这一地区的年均温自1952年至今均具有一个显著的上升趋势,年降水量的上升趋势则不显著。
![]() |
图 3 焉耆气象站气象资料图 (1952—2011年) Fig.3 Climatic diagram for the Yanqi meteorological station (1952—2011) |
由表 1可知,HEX年表的标准差略高于岳桦树轮宽度年表[15, 16, 17],与欧洲桦树轮宽度年表持平[12, 13, 14],其平均敏感度指标也超过了0.3。平均敏感度度量了相邻树轮间的宽窄变化情况,主要反映气候的短期变化和高频变化,一般认为平均敏感度超过0.3时即为较高[22]。较高的一阶自相关说明HEX年表有明显的滞后。为了研究其长时间尺度的滞后情况,对HEX年表进行了1—10阶自相关分析。结果表明,研究区域天山桦前一年的树木径向生长将影响到后一年的生长,并且这种作用会持续到随后的两年(表 2)。较高的平均树内相关说明样树生长较匀称,而序列平均相关和平均树间相关相对较低则说明样树间轮宽变化的一致性较弱。HEX年表的信噪比与Yu等[16]和Takahashi等[15]所建立的岳桦树轮宽度年表接近。样本总体代表性超过了85%,说明HEX年表能够较好地反映研究区内天山桦树轮宽度变化的基本特征。
采样点代号 Site code | 相关系数 Correlation coefficient 样本量 Sample size | 1阶 First-order | 2阶 Second-order | 3阶 Third- order | 4阶 Fourth-order | 5阶 Fifth-order |
*代表显著性水平达0.05 | ||||||
HEX | r | 0.453* | 0.203* | 0.053 | 0.196 | 0.012 |
n | 101 | 100 | 99 | 98 | 97 | |
采样点代号 Site code | 相关系数 Correlation coefficient 样本量 Sample size | 6阶 Sixth-order | 7阶 Seventh-order | 8阶 Eighth-order | 9阶 Ninth-order | 10阶 Tenth-order |
HEX | r | -0.112 | -0.095 | -0.015 | -0.078 | -0.190 |
n | 96 | 95 | 94 | 93 | 92 |
研究人员在HEX采样点偏北50 m,海拔高度、坡向、坡度等相同处,同时采集了21棵,共计41根的雪岭云杉(Picea schrenkiana)样本[23]。使用与上文所述相同的方法研制了这一云杉采样点(后文用HE4表示)的树轮宽度年表,用于和HEX年表进行对比分析。使用高低通滤波器[24]对2个年表进行高低频信息分解后,分别在其全频域、高频域和低频域做相关分析。如表 3所示,无论在全频域、高频域和低频域上,开都河流域天山桦与雪岭云杉树轮宽度年表均表现出了极显著的相关性,且在高频域上的相关性要高于低频域。这种树轮宽度变化的一致性则表明,研究区域天山桦与雪岭云杉的树木径向生长可能受相似气候限制因子的影响。
相关系数 Correlation coefficient 样本量Sample size | 全频域 Original | 高频域 High frequency | 低频域 Low frequency |
*代表显著性水平达0.01 | |||
r | 0.48* | 0.61* | 0.49* |
n | 102 | 90 | 90 |
利用焉耆气象站1952—2011年上年8月至当年9月的逐月气象资料以及夏季(6—8月)气象资料的均值,与HEX年表进行单相关普查。如图 4所示,天山桦树轮宽度与降水量的相关则不显著;而与上年12月平均气温呈显著正相关(r=0.346,P<0.01,n=59),与当年6月平均气温呈显著负相关(r=-0.312,P<0.01,n=60)。
![]() |
图 4 树轮宽度年表与气象资料的相关分析结果 Fig.4 Simple correlations between the tree-ring width chronology and the meteorological data a. HEX与降水;b. HEX与均温; 虚线代表显著性水平达0.05 |
根据树木生长气候响应分析结果,可以看出上年12月和当年6月平均气温对树木当年径向生长的限制作用较为明显。从树木生理学角度解释,在高海拔山区,上年12月的低温会导致树木冻伤,降低根系活力[3]。脱芽将消耗树木储存的养分,并会降低树木在来年的生长潜力和光合作用率[25, 26]。以上原因将会造成树木在来年形成较窄树轮。相反,这一时期较高的气温将会减轻对树芽的冻伤,从而有助于减少树木在萌芽时耗费的养分并促进树木在来年的光合作用,从而形成较宽的树轮。采样区域的土壤种类为薄层土,土层较薄储水能力有限。天山桦在6月份正处于快速生长期。这一时段气温偏高将加强树木蒸腾和土壤蒸发,加剧干旱胁迫,从而不利于白天光合作用积累营养物质[27]。随着白天温度的升高,夜晚温度也会随之偏高。这会使树木的呼吸作用增强,较多地消耗白天积累的营养物质,造成营养的净积累减少,从而形成较窄的年轮[28]。以上结果与长白山的岳桦[16],天目山和黄山的五针松(Pinus morrisonicola Hayata)[29]以及福建长汀地区的马尾松(Pinus massoniana)[30]等的径向生长对气温的响应相似。
2.4 树轮宽度年表周期分析采用功率谱[24]和小波谱[31]的方法对HEX年表进行周期分析,来了解长时间范围内研究区天山桦树轮宽度变化的周期性。功率谱分析结果表明(图 5a),树轮年表具有2.1a(P<0.10)和4.0a(P<0.05)的变化准周期;小波谱分析结果则显示有个强健的~50a波动贯穿整个树轮年表(图 5b)。其中,2.1a准周期可能是平流层“准两年震荡”Quasi-Biennial Oscillation(QBO)的反映,而4.0年准周期则可能反映了厄尔尼诺/南方涛动El Nio-Southern Oscillation(ENSO)的影响。以上周期在树轮气候学研究中较为常见[32, 33, 34, 35, 36]。年表中存在的~50a波动与太阳活动世纪周期(Gleissberg)的1/2谐频相吻合。50a的变化准周期不仅出现在天山山区的树轮气候重建中[37, 38, 39],在基于树轮资料重建的黄河[40]和黑河[41]历史径流量中也有发现。周期分析结果表明,研究区天山桦的径向生长不仅可能受气候系统内部(QBO和ENSO)的非线性作用,还有可能存在气候系统外部强迫(主要是太阳活动)的影响。
![]() |
图 5 功率谱分析结果(黑色线代表功率谱值,红色线代表 0.05显著性水平,蓝色线代表 0.10显著性水平)(a)和小波谱分析结果(黑色框代表 0.10显著性水平)(b)和 总体小波功率谱(c)(虚线代表 0.10显著性水平) Fig.5 The result of power spectrum analysis (The black line denotes power spectrum values,the red line is P<0.05,the blue line is P<0.10) (a) The result of wavelet analysis (Black contour is P<0.10) (b) The global wavelet power spectrum (c)(The dashed line is P<0.10) |
选择逐月多年多元ENSO指数(Multivariate El Nio-Southern Oscillation Index,1950—2011)[42]与HEX年表进行相关分析,以便进一步证实大尺度气候震荡对研究区域天山桦径向生长的影响。结果表明,1月至4月多元ENSO指数与HEX年表的相关系数较高(表 4)。经3a滑动平均后,1月至4月多元ENSO指数与HEX年表间的相关系数均有所上升。其中,3月多元ENSO指数与年表的相关系数最高(r=0.45,P<0.001,n=60),且两者存在相似的变化趋势(图 6)。
月份Month | ||||||
1月January | 2月February | 3月March | 4月April | 5月May | 6月June | |
r | 0.22 | 0.21 | 0.23 | 0.21 | 0.16 | 0.10 |
p | 0.09 | 0.10 | 0.07 | 0.09 | 0.23 | 0.46 |
月份Month | ||||||
7月July | 8月August | 9月September | 10月October | 11月November | 12月December | |
r | 0.05 | -0.03 | -0.03 | 0.01 | 0.02 | 0.00 |
p | 0.71 | 0.83 | 0.83 | 0.96 | 0.91 | 0.99 |
![]() |
图 6 树轮宽度年表 (a) 与3月多元ENSO指数 (b) 的对比 Fig.6 Graphical comparison of the tree-ring width chronology(a)with the March Multivariate ENSO Index(b) ENSO为简写,全拼为El Nio-Southern Oscillation,意为厄尔尼诺/南方涛动 |
在本研究中,利用开都河流域中段采集的20棵样树,共40根树芯样本,建立了研究区域天山桦采样点的树轮宽度年表。该年表的特征参数与已有的桦木树轮宽度年表接近,且能够较好地反映研究区内天山桦树轮宽度变化的基本特征。天山桦与雪岭云杉树轮宽度年表在全频域、高频域及低频域上存在的显著正相关则表明研究区域两者的树木径向生长可能受相似气候限制因子的影响。树木生长气候响应分析结果显示,天山桦的树轮宽度与上年12月和当年6月的平均气温呈显著相关,与降水量的相关则不显著。天山桦树轮年表的2.1a、4.0a和约50a变化准周期则表明,研究区内的轮宽变化在较短时期有可能受平流层QBO和ENSO的作用;从较长时间尺度来看,其径向生长还可能存在太阳活动周期变化的影响。而该年表与3月多元ENSO指数存在的相似变化趋势,则进一步证实了大尺度气候震荡对研究区域天山桦径向生长具有影响。
本研究的开展对于今后以天山桦为对象的树轮气候学研究具有参考意义。但由于国内外基于桦木树种的树轮气候学研究成果较少,所以文中树轮宽度与气象要素间响应的树木生理学意义多引用了针叶树种的相关结论。因此,关于气候响应在阔叶与针叶树种之间差异的问题还有待进一步的研究。
致谢: 感谢巴州林业局陈琴、李明忠、哈西巴图尔在野外采样中给予的帮助。
[1] | Liu Y, An Z S, Linderholm H W, Chen D L, Song H M, Cai Q F, Sun J Y, Tian H. Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings. Science in China Series D: Earth Sciences, 2009, 52(3): 348-359. |
[2] | Shao X M, Huang L, Liu H B, Liang E Y, Fang X Q, Wang L L. Reconstruction of precipitation variation from tree rings in recent 1000 years in Delingha, Qinghai. Science in China Series D: Earth Sciences, 2005, 48(7): 939-949. |
[3] | Liang E Y, Shao X M, Eckstein D, Huang L, Liu X H. Topography- and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau. Forest Ecology and Management, 2006, 236(2/3): 268-277. |
[4] | Zhang Q B, Qiu H Y. A millennium-long tree-ring chronology of Sabina przewalskii on northeastern Qinghai-Tibetan Plateau. Dendrochronologia, 2007, 24(2/3): 91-95. |
[5] | Wang L, Duan J P, Chen J, Huang L, Shao X M. Temperature reconstruction from tree-ring maximum density of Balfour spruce in eastern Tibet, China. International Journal of Climatology, 2010, 30(7): 972-979. |
[6] | 勾晓华, 陈发虎, 杨梅学, 彭剑峰, 强维亚, 陈拓. 祁连山中部地区树轮宽度年表特征随海拔高度的变化. 生态学报, 2004, 24(1): 172-176. |
[7] | 彭剑峰, 勾晓华, 陈发虎, 刘普幸, 张永, 方克艳. 阿尼玛卿山地不同海拔青海云杉(Picea crassifolia)树轮生长特性及其对气候的响应. 生态学报, 2007, 27(8): 3268-3276. |
[8] | 尹红, 刘洪滨, 郭品文, Linderholm H. 小兴安岭低山区红松生长的气候响应机制. 生态学报, 2009, 29(12): 6333-6341. |
[9] | 尚华明, 魏文寿, 袁玉江, 喻树龙, 张同文, 瓦合提 艾则买提, 李新建. 阿尔泰山南坡树轮宽度对气候变暖的响应. 生态学报, 2010, 30(9): 2246-2253. |
[10] | 陈峰, 袁玉江, 魏文寿, 喻树龙, 尚华明, 张瑞波, 张同文, 范子昂, 李杨. 用西伯利亚落叶松年轮最大密度重建和布克赛尔5-8月份平均最高温度. 生态学报, 2010, 30(17): 4652-4658. |
[11] | 张同文, 袁玉江, 喻树龙, 魏文寿, 尚华明, 张瑞波, 陈峰, 范子昂. 树轮灰度与树轮密度的对比分析及其对气候要素的响应. 生态学报, 2011, 31(22): 6743-6752. |
[12] | Kuivinen K C, Lawson M P. Dendroclimatic analysis of birch in South Greenland. Arctic and Alpine Research, 1982, 14(3): 243-250. |
[13] | Karlsson P S, Tenow O, Bylund H, Hoogesteger J, Weih M. Determinants of mountain birch growth in situ: effects of temperature and herbivory. Ecography, 2004, 27(5): 659-667. |
[14] | LevaničT, Eggertsson O. Climatic effects on birch (Betula pubescens Ehrh.) growth in Fnjoskadalur valley, northern Iceland. Dendrochronologia, 2008, 25(3): 135-143. |
[15] | Takahashi K, Tokumitsu Y, Yasue K. Climatic factors affecting the tree-ring width of Betula ermanii at the timberline on Mount Norikura, central Japan. Ecological Research, 2005, 20(4): 445-451. |
[16] | Yu D P, Gu H Y, Wang J D, Wang Q L, Dai L M. Relationships of climate change and tree ring of Betula ermanii tree line forest in Changbai Mountain. Journal of Forestry Research, 2005, 16(3): 187-192. |
[17] | 王晓明, 赵秀海, 高露双, 姜庆彪. 长白山北坡林线处岳桦年轮年表及其与气候的关系. 应用与环境生物学报, 2012, 18(1): 9-16. |
[18] | Speer J H. Fundamentals of Tree-Ring Research. Tucson: The University of Arizona Press, 2010: 87-105. |
[19] | Grissino-Mayer H D. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Research, 2001, 57(2): 205-221. |
[20] | Cook E R. A Time Series Analysis Approach to Tree-Ring Standardization. Tucson: The University of Arizona Press, 1985: 1-171. |
[21] | Wigley T M L, Briffa K R, Jones P D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Applied Meteorology and Climatology, 1984, 23(2): 201-213. |
[22] | Savva Y, Oleksyn J, Reich P B, Tjoelker M G, Vaganov E A, Modrzynski J. Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees, 2006, 20(6): 735-746. |
[23] | Zhang T W, Yuan Y J, Liu Y, Wei W S, Zhang R B, Chen F, Yu S L, Shang H M, Qin L. A tree-ring based temperature reconstruction for the Kaiduhe River watershed, northwestern China, since A.D. 1680: Linkages to the North Atlantic Oscillation. Quaternary International, 2013, 311: 71-80. |
[24] | Fritts H C. Tree Rings and Climate. London: Academic Press, 1976: 268-273, 295-300. |
[25] | Lazarus B E, Schaberg P G, DeHayes D H, Hawley G J. Severe red spruce winter injury in 2003 creates unusual ecological event in the northeastern United States. Canadian Journal of Forest Research, 2004, 34(8): 1784-1788. |
[26] | Misson L, Rathgeber C, Guiot J. Dendroecological analysis of climatic effects on Quercus petraea and Pinus halepensis radial growth using the process-based MAIDEN model. Canadian Journal of Forest Research, 2004, 34: 888-898. |
[27] | Cai Q F, Liu Y, Song H M, Sun J Y. Tree-ring-based reconstruction of the April to September mean temperature since 1826 AD for north-central Shaanxi Province, China. Science in China Series D: Earth Sciences, 2008, 51(8): 1099-1106. |
[28] | 陈峰, 袁玉江, 魏文寿, 范子昂, 喻树龙, 张瑞波, 张同文, 尚华明. 树轮记录的酒泉近240a来6-9月气温变化. 干旱区研究, 2012, 29(1): 47-54. |
[29] | Shi J F, Cook E R, Lu H Y, Li J B, Wright W E, Li S F. Tree-ring based winter temperature reconstruction for the lower reaches of the Yangtze River in southeast China. Climate Research, 2010, 41(2): 169-175. |
[30] | Chen F, Yuan Y J, Wei W S, Yu S L, Zhang T W. Tree ring-based winter temperature reconstruction for Changting, Fujian, subtropical region of Southeast China, since 1850: linkages to the Pacific Ocean. Theoretical and Applied Climatology, 2012, 109(1/2): 141-151. |
[31] | Torrence C, Compo G P. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 1998, 79(1): 61-78. |
[32] | Liu Y, Ma L M, Cai Q F, An Z S, Liu W G, Gao L Y. Reconstruction of summer temperature (June-August) at Mt. Helan, China, from tree-ring stable carbon isotope values since A D 1890. Science in China Series D: Earth Sciences, 2002, 45(12): 1127-1136. |
[33] | 刘禹, 雷莺, 宋慧明, 包光, 孙铂, Linderholm H W, 王守功. 以白皮松树轮宽度重建公元1616年以来山东于林年平均最低气温. 地球环境学报, 2010, 1(1): 28-35. |
[34] | Liang E Y, Shao X M, Liu X H. Annual precipitation variation inferred from tree rings since A.D. 1770 for the western Qilian Mts., Northern Tibetan Plateau. Tree-Ring Research, 2009, 65(2): 95-103. |
[35] | Li J B, Gou X H, Cook E R, Chen F H. Tree-ring based drought reconstruction for the central Tien Shan area in northwest China. Geophysical Research Letters, 2006, 33(7): L07715.1-L07715.5. |
[36] | Chen F, Yuan Y J, Wei W S. Climatic response of Picea crassifolia tree-ring parameters and precipitation reconstruction in the western Qilian Mountains, China. Journal of Arid Environment, 2011, 75(11): 1121-1128. |
[37] | 喻树龙, 袁玉江, 魏文寿, 尚华明, 张同文, 童忠, 杜敏. 天山北坡西部树木年轮对气候因子的响应分析及气温重建. 中国沙漠, 2008, 28(5): 827-832. |
[38] | 张瑞波, 魏文寿, 袁玉江, 喻树龙, 杨青. 1396-2005年天山南坡阿克苏河流域降水序列重建与分析. 冰川冻土, 2009, 31(1): 27-33. |
[39] | Zhang T W, Yuan Y J, Liu Y, Wei W S, Yu S L, Chen F, Fan Z A, Shang H M, Zhang R B, Qin L. A tree-ring based precipitation reconstruction for the Baluntai region on the southern slope of the central Tien Shan Mountains, China, since A.D. 1464. Quaternary International, 2012, 283: 55-62. |
[40] | Gou X H, Chen F H, Cook E R, Gordon J, Yang M X, Li J B. Streamflow variations of the Yellow River over the past 593 years in western China reconstruction from tree rings. Water Resource Research, 2007, 43(6): W06434.1-W06434.9. |
[41] | Liu Y, Sun J Y, Song H M, Cai Q F, Bao G, Li X X. Tree-ring hydrologic reconstructions for the Heihe River watershed, western China since AD 1430. Water Research, 2010, 44(9): 2781-2792. |
[42] | Wolter K, Timlin M S. Measuring the strength of ENSO events: How does 1997/98 rank? Weather, 1998, 53(9): 315-324. |