文章信息
- 陈绍晴, 房德琳, 陈彬
- CHEN Shaoqing, FANG Delin, CHEN Bin
- 基于信息网络模型的生态风险评价
- Ecological risk assessment based on information network model
- 生态学报, 2015, 35(7): 2227-2233
- Acta Ecologica Sinica, 2015, 35(7): 2227-2233
- http://dx.doi.org/10.5846/stxb201306091540
-
文章历史
- 收稿日期:2013-06-09
- 网络出版日期:2014-07-22
生态风险评价(Ecological risk assessment,ERA)通常被定义为通过估算在特定干扰发生后或者预计干扰即将发生时生态系统的可能损害或潜在的各种影响的定量评价[1, 2, 3]。生态风险胁迫因子的来源涉及化学、物理和生物等多方面,受压力影响下的生态系统或其组分的有害影响的量化分析评价,即生态风险评价,对于科学的制定环境管理决策具有重要的意义,指导生态系统的有效管理,以减少风险对生态系统或某组分的危害影响[4]。
Findlay和Zheng采用交叉验证多元回归以及交叉验证全息神经网络,对湿地生态系统暴露在胁迫中的风险进行量化评估[5]。Hui等结合自然因素及人为影响的七种指标,采用神经网络模型,对青藏铁路沿线的生态环境进行整合风险评价[6]。Pollino等通过已有数据以及提取的信息,对贝叶斯网络模型进行调参,并对鱼类生物群落的生态风险进行研究[7];Lee和Lee以及Zhou等采用贝叶斯网络模型,分别对对核燃料废物处置,以及水坝工程进行了概率风险评价[8, 9]。此类的ERA模型有助于指导局部风险分析和决策支持,但其大多数局限于单胁迫因子影响下的特定生物种类以及生物量的测算,并筛选生理或物化指标来表征潜在影响,并确定这些影响的概率分布。在方法层面上,对于多胁迫因子相互作用下的影响模拟不具备相互兼容性。同时,这些模型大多只关注从风险源到风险因子到风险受体这一因果关系(或者称为风险树),而未真正考虑生态系统内部的相互作用,尤其是不同生态单元(如种群、群落等)的直接和间接关系。而生态单元在暴露于干扰下的互动影响,以及生态系统内部的影响路径和过程,对于系统安全程度的判断有着关键的影响[10, 11, 12, 13]。因此,考虑生态系统组分互作过程下的风险存在积累和放大的效应,有必要构建基于系统的风险过程模拟方法和框架。
本文在传统生态网络分析基础上构建了信息网络的概念,进而提出一种基于信息网络的全局生态风险评价框架与方法,并举例说明其应用价值。有别于传统的单因素和特定受体的风险模拟方法,信息生态网络模型同时考虑直接和间接影响,并兼容多种风险源和多种风险受体的共同评估与预测。本文以新的研究视角和模拟方法实现基于系统层面的生态风险评价,对如何采用系统生态学方法对生态系统进行有效评估和管理提供了范式。
1 研究方法 1.1 风险评价框架传统信息伦认为,信息可用于描述复杂事件发生的过程及其概率,是世界在物质和能量的基础上的一种可量化的联系和作用。这一理论被Shannon和Ulanowicz等生态学家用于描述生态系统物种和流量的多样性[14, 15]。在多来源的风险下,物质流或能量流主导的网络存在固有的不相容性,使得干扰后系统的响应特性难以量化。对此,信息网络风险采用信息论的基本概念来实现网络流量的概念转换,即将原本以物质/能量为基础的网络,转换为以信息为基础的网络。在定义了信息生态风险的概念后,我们可以建立了基于信息网络模型的生态风险评价的框架。
框架主要目的包括:(1)评估由人为干扰所引起多种环境胁迫因子对生态系统的直接或间接潜在影响;(2)利用系统生态的方法和指标为干扰下的生态系统管理提供一个更系统综合的工具;(3)验证生态网络理论和信息论联合应用于生态系统风险评价中的有效性和预测性。
1.2 风险评价步骤这一框架利用信息网络模型来实现生态风险评价的过程,由5个主要步骤组成:(1) 环境变化分析。在某一干扰事件产生后,一系列胁迫因子对自然环境(如栖息地)带来的变化通过相应的指标进行量化;(2) 初始风险估算。对于某个特定胁迫因子,某些敏感组分会先受影响,然后这一影响会通过控制关系传递到其他非直接受险的组分。结合胁迫因子的发生概率和不同组分对不同胁迫因子的敏感性,得出特定组分对应因子的环境风险值;(3) 网络控制分析。通过实地考察和文献调研等方式,追踪量化食物网中各组分(物种、群落)间的能量物质流,分析受干扰生态系统的食物网结构。在Patten和Auble[16],Fath[17]以及Schramski等[18]的相关研究基础上,依照物质能量流,通过网络控制分析量化组分间信息控制分布;(4) 直接风险模拟。由环境变化而引起的生态风险,将通过控制关系转移并扩散到系统的其他组分中,从而影响整个受干扰的生态系统[11, 19]。联合各胁迫因子的环境初始风险结果和生态系统内部的控制作用,模拟生态风险在生态系统各组分间的传递过程,量化受扰动后生态系统直接传递下的风险值;(5) 整合风险模拟。基于直接风险网络,同时考虑组分间直接和间接作用,得到该生态系统受干扰后的整合风险网络。
表 1总结了基于信息网络模型的生态风险评价步骤的基本目的、计算指标和对应公式。
生态风险评价
Ecological risk assessment | 步骤目的
Description | 计算指标
Indicator | 计算公式
Equation |
(1)环境变化分析
Environmental change analysis | 量化人为干扰下的环境变化 | ΔIx:环境因子在受到干扰前后的变化程度 | ![]() Itx:可测环境指标在受干扰后特定时间t的数值; I0x:这一指标背景值 |
(2)初始风险估算
Evaluation of initial risk | 评估各组分的初始环境风险 | ri0:初始风险值 | ri0=ΔIxPxVix
Px:发生概率;Vix:组分i对风险因子x的敏感度 |
(3)网络控制分析
Network control analysis | 确定各组分间的控制关系 | caij:组分j施加给组分i的控制作用 | ![]() nij:输出端整合流量 nij′:输入端整合流量 |
(4)直接风险模拟
Direct risk simulation | 模拟直接路径下的风险值 | R=(rji):
直接风险网络; | ![]() rji:组分i流向j的风险值 |
(5)整合风险模拟
Integral risk simulation | 综合直接间接路径下的风险值 | ![]() 整合风险网络 | ![]() ![]() |
澜沧江发源于我国青海省玉树藏族自治州杂多县境唐古拉山东北部,出境称湄公河,流经中国、老挝、缅甸、泰国、柬埔寨及越南6国。漫湾水电站建于1993年,位于云南省澜沧江中游河段,坝址在云县与景东县交界处漫湾镇附近,是澜沧江梯级水电开发工程的第一个大型水电站[20]。水坝建设会导致河流系统的水文水力、河流流量和栖息地等产生系列的复杂变化,从而强烈干扰了水生生物群落的正常生存状况[21, 22, 23, 24]。据监测,澜沧江漫湾库区水质的变化较明显,尤其是是重金属浓度呈现一定增长趋势[25],对当地丰富的生物资源构成潜在威胁。本研究的基础数据来源为建坝前后5a(1992—1996年)漫湾库区环境变化的实地观测,其中包括建坝前后生态环境变化等方面的基础调研,由此分析在受到重金属浓度增大后在群落中引起的风险累积。为简化模拟过程,所建立的简单食物网由四个生态功能组分组成,包括肉食性鱼类、浮游植物及浮游动物(风险评价的主要生命组分),以及食物碎屑(连接这些组分的重要节点)。
2 结果与讨论根据初始环境风险影响程度、发生概率和敏感度,测得漫湾库区生态系统建坝前后重金属污染情景下各敏感受体的初始风险值(表 2),根据重金属浓度变化程度,选取Hg、Pb及Cd作为研究对象。在大坝蓄水前下游Hg平均浓度为0.4 μg/L(作为背景值),5a内该值最大增至2.5 μg/L(作为压力值),漫湾水库蓄水前水体Pb和Cd的平均浓度分别为5.9、0.35 μg/L(作为背景值),10a后其浓度分别增大至29、2 μg/L。考虑干扰发生的概率,以及肉食性鱼类、浮游植物和浮游动物对重金属的敏感度,计算得出潜在影响强度。在5a期间内3a中观测到重金属Hg浓度指标数值较之背景值有所上升,因此发生概率达到60%。重金属Pb枯水期浓度较高,选取枯水期时长(5个月)占全年比例作为发生概率,即重金属Pb风险发生概率为42%。重金属Cd的发生概率选取检出率,Cd的检出率为82%。肉食性鱼类、浮游植物和浮游动物一旦暴露在外来干扰后,会立即会受到风险影响,但各组分对风险的敏感度不同本文针对漫湾库区的物种构成和污染物可能的富集情况进行选取计算。由此,对应各组分(即风险受体),外部环境输入的初始风险值得到了估算。
生物群落
Community | 影响强度
Impact intensity | 概率
Probability | 敏感度
Vulnerability | ||||
ΔIHg | ΔIPb | ΔICd | PHg/% | PPb/% | PCd/% | Vi | |
肉食性鱼类Piscivorous fish(H1) | 0.84 | 0.80 | 0.83 | 60 | 42 | 82 | 0.20 |
碎屑Detritus(H2) | 0 | 0 | 0 | - | - | - | - |
浮游植物Phytoplankon(H3) | 0.84 | 0.80 | 0.83 | 60 | 42 | 82 | 0.50 |
浮游动物Zooplankton(H4) | 0.84 | 0.80 | 0.83 | 60 | 42 | 82 | 0.20 |
Vi在相关文献[26, 27]基础上,按照类群特性进行估算,P通过建坝后的年份发生的概率计算所得 |
另一方面,通过库区实地观测以及案例相关文献,可量化4个生态功能群落的所有输入流、输出流及系统内部流动,构建库区生态系统基于能流的简单生态网络模型。为了简化计算过程,此模型仅考虑这4个类群之间的能量流动,不包括类群内部的能流。这一模型由网络拓扑图及数字矩阵(F)(图 1)两种可互换的形式表示。
![]() |
图1 库区风险受体间能量流图及其对应矩阵(F)/(kJ m-2 a-1) Fig.1 The energy flow digraph and its flow matrix (F) |
联结系统相关组分的初始风险值(表 1)和控制分布关系,得到了发生环境干扰后系统内部的各组分间的风险传递情景,初次风险(作为H1,H3和H4的输入)被重新分布在生物群落中,依次确定风险在库区四个组分间传递的直接路径(图 2),得到直接风险网络,通过拓扑图和矩阵(R)的方式表示出风险流动方向和强度。在考虑网络间接效应下,得到系统组分间的整合风险流(整合了包括直接和间接风险流),从而得到暴露于建坝影响下的最终生态风险预测(图 3),对应整合风险矩阵为。
![]() |
图2 库区风险受体间直接风险传递图及其对应矩阵(R) Fig.2 The direct risk flow digraph and matrix (R) 虚线代表风险流动,与能量流的实线相区别; 由不同组分引起的风险(不同源的风险)在示意图中的箭头和矩阵中分别采用不同颜色表示 |
![]() |
图3 库区风险受体间整合风险传递图(直接和间接风险叠加)及其对应矩阵(R) Fig.3 The integral risk flow digraph and matrix (R) 为了与直接风险流动区分,在整合风险网络的示意图中,用曲线说明累积的风险流动 |
不同生物群落的初始风险、直接风险和整合风险的风险值,前两者在整合风险中所占的比例,以及各自风险传递路径等结果汇总在表 3。结果表明,系统一些组分(即肉食性鱼类和浮游植物)的初始风险与直接和间接网络风险有着显著的区别,如肉食性鱼类的初始风险只占整合值的20.7%,而直接风险占整合值的90.1%。这种区别使得风险评估的排序完全不同:在初始生态风险评估中,浮游植物(H3)一开始暴露重金属的环境胁迫得到最大的风险,而肉食性鱼类(H1)和浮游动物(H4)则受到相对较小的风险,但是通过信息网络模拟,并考虑累积效应后,发现肉食鱼类的整合风险在各受体中达到最大值,而浮游动物仍维持在较低的水平。同时,在综合考虑网络效应下,风险传递途经也更多样更复杂,如库区生态系统最后整合风险路径达到17,远大于初始的3个风险流。由初始模式到直接网络模式再到整合网络模式,风险流动风险水平和路径数量显著增加,意味着风险在网络相互控制关系下得到了扩散和放大,因此加重了一开始所估算的即时影响。也就是说,风险传递的过程将受到网络组分间错综复杂生态关系的重大影响,风险受体间相互的累积效应是不能被忽略的,它在多因子生态风险评价中尤其值得重视。
重金属
Heavy metal | 风险状态
Risk status | 肉食性鱼类
Piscivorous fish | 碎屑
Detritus | 浮游植物
Phytoplankton | 浮游动物
Zooplankton | 流动路径数
Pathways number* |
Hg | ri0 | 0.1008 | 0.0000 | 0.2520 | 0.1008 | 3 |
Ri | 0.4562 | 0.2099 | 0.2520 | 0.1362 | 3+9 | |
![]() | 0.5049 | 0.2100 | 0.2520 | 0.1362 | 3+9+5 | |
Pb | ri0 | 0.0339 | 0.0000 | 0.0847 | 0.0339 | 3 |
Ri | 0.1531 | 0.0704 | 0.0847 | 0.0458 | 3+9 | |
![]() | 0.1585 | 0.0704 | 0.0847 | 0.0458 | 3+9+5 | |
Cd | ri0 | 0.0231 | 0.0000 | 0.0576 | 0.0231 | 3 |
Ri | 0.1042 | 0.0479 | 0.0576 | 0.0312 | 3+9 | |
![]() | 0.1067 | 0.0479 | 0.0576 | 0.0312 | 3+9+5 | |
ri0即初始风险值,Ri即直接风险值,![]() |
不同重金属对于各生物群落所引起的初始风险、间接风险和整合风险如表 3所示。从3种重金属的整合风险值的比较中可以看出,重金属Hg对于生物群落所导致的风险水平最最高,其中针对肉食性鱼类Hg的整合风险达到0.5049,为所有重金属施加到各个受体中整合风险的最高值。这说明由于水坝建设导致重金属Hg浓度上升所带来的风险应加以足够的重视,尤其是对于肉食性鱼类,通过食物链的风险积累、间接风险的传播,由整合风险所体现出的结果明显高于初始风险,重金属Hg对于这一类种群的威胁最为严重。此外重金属Pb和Cd对肉食性鱼类所导致的整合风险,分别高达0.1531及0.1067,虽低于Hg对肉食性鱼类带来的风险,但是明显高于同种重金属对于其他生物种群的风险(如碎屑、浮游植物、浮游动物)。这一结果印证了肉食性鱼类虽然初始风险低于浮游植物,但是通过整合风险网络的传播,肉食性鱼类受到重金属的影响最大。
此外,利用信息网络模型,还能够定量追踪任一生态功能组分所受风险的来源(图 4)。结果表明,几乎所有组分(除了未受到其他三者控制的H3)受到风险的影响强度都不仅仅来源于外界环境,而是经由网络效应受其他组分的影响。比如在此案例,肉食性鱼类的生态风险中有近79.3%来自于其他组分,包括食物碎屑(43.1%)、浮游动物(23.8%)和浮游植物(12.4%),只有20.7%源自外界直接影响。有学者研究表明,能够揭示受扰动系统内部间接效应的技术更适用于大组织尺度的系统(如群落和生态系统)的生态风险评价[28]。在这一点上,基于信息的生态网络模型较之传统的风险评价评价系统和明确,能够揭示在考虑多受体相互作用后受干扰生态系统的整体风险情景,有效补充了传统ERA模型所忽略的网络累积效应。
![]() |
图4 整合风险网络中各生物群落的风险来源追踪 Fig.4 The proportions of different risk sources composing the received risk of each components in the integral risk network H1:肉食性鱼类;H2:碎屑;H3:浮游植物;H4:浮游动物 |
本文所建立的基于信息的生态风险网络模型在传统的研究基础上,拓宽了风险的终点至整个群落,并同时兼容整体和物种的风险值估算,并能够揭示在考虑多受体相互作用后受干扰生态系统的风险路径流动,通过对网络流量的转换和控制分布分析,提出一种能实现全局风险模拟的新型生态网络模型,即信息网络模型。在该模型基础上,建立了面向生态系统的生态风险评价框架,实现同时兼容多胁迫因子统一模拟和多风险受体间的风险追踪,实现了基于系统层面的生态风险评价。
从对水库生态系统的研究案例可知:(1)在网络放大效应下,系统整合风险值与初始环境风险值之间有着显著差别;(2)在发生环境胁迫时,虽然处于食物网底层的生物类群可能最先受险,但在控制信息作用下食物网上层类群同样会因此而受险,甚至其最终受到的潜在威胁比前者更大;(3)在信息网络中可识别出复杂的风险内部流动路径。通过使用基于信息网络模型的生态风险评价框架,可对生态系统自组织响应干扰的过程和结果进行清晰的追踪和揭示,有利于当下复杂人类干扰环境下的全局生态系统管理的实现。
[1] | Martin B G. Weather, climate and tourism a geographical perspective. Annals of Tourism Research, 2005, 32(3): 571-591. |
[2] | Scott D, Lemieux C. Weather and climate information for tourism. Procedia Environmental Sciences, 2010, 1(1): 146-183. |
[3] | 刘清春, 王铮, 许世远. 中国城市旅游气候舒适性分析. 资源科学, 2007, 29(1): 134-141. |
[4] | 李环娇. 陕西省旅游气候舒适度研究[D]. 西安: 陕西师范大学, 2008. |
[5] | 王雁, 吴宜进, 朱江. 湖北省旅游气候舒适度分析. 华中师范大学学报: 自然科学版, 2009, 43(1): 171-180. |
[6] | 覃卫坚. 广西旅游气候舒适度分析. 广西气象, 2003, 24(4): 50-58. |
[7] | 王洪桥, 孟祥君, 吴正方. 吉林省旅游气候舒适度时空差异分析. 干旱区资源与环境, 2012, 26(1): 141-148. |
[8] | 李超, 李文峰, 陈威霖. 江苏省旅游气候舒适性分析及旅游区划. 长江流域资源与环境, 2011, 20(S1): 14-17. |
[9] | 杨成芳. 山东旅游气候舒适度评价. 山东气象, 2006, 26(2): 5-7. |
[10] | 马丽君, 孙根年. 中国西部热点城市旅游气候舒适度. 干旱区地理, 2009, 32(5): 791-797. |
[11] | 马丽君, 孙根年, 王洁洁. 中国东部沿海沿边城市旅游气候舒适度评价. 地理科学进展, 2009, 28(5): 713-722. |
[12] | 马丽君, 孙根年. 中国热点城市旅游气候舒适度评价. 陕西师范大学学报: 自然科学版, 2009, 37(2): 96-102. |
[13] | 佘赛芬, 骆培聪, 张莹莹, 叶爱青, 王娟. 武夷山市旅游气候舒适度与客流量变化相关性分析. 泉州师范学院学报, 2012, 30(2): 52-57. |
[14] | 赵小艳, 申双和, 孙虎声. 南京旅游气候舒适度的探讨. 南京气象学院学报, 2008, 31(2): 250-256. |
[15] | 孙根年, 马丽君. 西安旅游气候舒适度与客流量年内变化相关性分析. 旅游学刊, 2007, 22(7): 34-39. |
[16] | 马丽君, 孙根年, 康国栋, 王美红. 北京旅游气候舒适度与客流量年内变化相关分析. 干旱区资源与环境, 2009, 23(2): 95-100. |
[17] | 陈莎莎. 新疆旅游气候舒适度分析与评价研究 [D]. 乌鲁木齐: 新疆师范大学, 2009. |
[18] | 黄东林. 桂林市旅游气候舒适度评价. 气象研究与应用, 2010, 31(3): 27-29. |
[19] | 姚小英, 蒲金涌, 刘晓强. "丝绸之路"东段旅游气候舒适性分析. 安徽农业科学, 2010, 38(13): 6822-6824. |
[20] | 陈冬冬, 张锦河, 刘法建. 黄山旅游气候舒适度与客流量变化相关性分析. 资源开发与市场, 2008, 24(7): 607-609. |
[21] | 陈朝. 张家界国家森林公园旅游气候舒适度研究 [D]. 长沙: 中南林业大学, 2011. |
[22] | 王金亮, 王平. 香格里拉旅游气候的适宜度. 热带地理, 1999, 19(3): 235-239. |
[23] | 杨尚英, 张秦伟, 陈小宁, 郭晓辉. 旅游气候资源的Fuzzy评价探讨-以太白山为例. 咸阳师范专科学校学报, 1999, 6(2): 30-33. |
[24] | 王业青, 张光生, 成小英, 李先会, 张凤. 湿地公园声环境效应. 中国农学通报, 2007, 23(6): 581-585. |
[25] | 张雪华, 王倜. 低声屏障在旅游公路建设中的应用. 长安大学学报, 2003, 23(4): 67-68. |
[26] | Denstadi J M, Jacobsen J K S, Lohmann M. Tourist perceptions of summer weather in Scandinavia. Annals of Tourism Research, 2011, 38(3): 920-940. |
[27] | Leitte A M, Petrescu C, Franck U, Richter M, Suciu O, Ionovici R, Herbarth O, Schlink U. Respiratory health, effects of ambient air pollution and its modification by air humidity in Drobeta-Turnu Severin, Romania. Science of the Total Environment, 2009, 407(13): 4004-4011. |
[28] | 王湘. 旅游环境学. 北京: 中国环境科学出版社, 2001: 30-34. |
[29] | 伦纳德, 奥托兰诺. 环境管理与影响评价. 郭怀成, 译. 北京: 化学工业出版社, 2004: 50-53. |