文章信息
- 龚冬琴, 吕军
- GONG Dongqin, LÜ Jun
- 连续免耕对不同质地稻田土壤理化性质的影响
- Effects of soil texture on variations of paddy soil physical and chemical properties under continuous no tillage
- 生态学报, 2014, 34(2): 239-246
- Acta Ecologica Sinica, 2014, 34(2): 239-246
- http://dx.doi.org/10.5846/stxb201303190451
-
文章历史
- 收稿日期:2013-3-19
- 修订日期:2013-9-26
2. 浙江大学教育部污染环境修复与生态健康重点实验室, 杭州 310058;
3. 浙江省亚热带土壤与植物营养重点实验室, 杭州 310058
2. Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058, China;
3. Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
In this study, effects of soil texture (i.e., loam and clay) on the variations of soil physical and chemical properties in response to continuous NT were addressed for the single cropping paddy field in Shaoxing area in southern China. Studied paddy fields were commonly and continuously used for rice cultivation by local farmers, which would be significant to reveal effects of NT on soil property under practical production. To avoid the disturbances from other factors, all soil samples were collected in the paddy fields with same field management measures in rice seeding, fertilization, and irrigation. Soil sampling efforts were finished during 5-10 days after rice harvesting at November, 2008. According to local practices, rice straws were all removed from paddy fields.
Results indicated that although soil compactions at 0-20 cm layers were increased with increasing NT applied years in both the loam and clay paddy soil, its increased intensity was higher in the clay soil than that in the loam soil, resulting in shallower plough layer occurring in the NT clay soil. Compare to the conventional tillage soil, the penetration resistance was increased by 32% and 90% in the loam and clay soil after 6 years of continuous NT, respectively. The clay soil also presented greater soil bulk densities than the loam soil after same years of continuous NT. Furthermore, soil organic matter and available nitrogen contents were both increased with NT applied years in the loam soil, while they were both significantly decreased in the clay soil. Although soil available phosphorus contents at the plough layer (0-20 cm) in both the loam and clay soils were increased after 6 years of continuous NT, their soil available potassium contents were both decreased. After 1-6 years of continuous NT, the loam paddy soil presented more positive consequences than the clay ones in terms of soil physical and chemical properties. When assessing the feasibility of applying NT method in paddy fields, the role of soil texture should be further considered in study, as it is an important factor in regulating variation of soil property under continuous NT. Rice straw mulching is an economic and effective way to mitigate soil degradation under continuous NT in practice. Considering the tillage cost and soil quality maintenance, overall ploughing is suggested to be performed once after every 3-4 years of continuous NT for clay paddy soils but for loam paddy soils it can be applied after a bit longer years of continuous NT in southern China.
免耕作为一种土壤保护性耕作方法,因其省工节能优势而在国内外得到了广泛应用[1, 2, 3]。国内外均已开展了大量的少、免耕条件下土壤理化性质变化的研究。然而,由于土壤过程的复杂性和多样性,许多研究结果不一致,甚至互相矛盾。一些研究结果表明,与翻耕土壤相比,免耕能降低表土层的容重,且能增加表土层有机质和全氮含量[4, 5];另一些研究表明,短时间免耕有利于水稻土物理性状的改善,而随着免耕时间的延长土壤物理性质变差[6];还有研究表明,单纯的免耕并不会致使土壤有机质和养分含量发生明显变化[7]。显然,土壤类型、农田生态条件和作物栽培方式的多样性,造成了免耕对不同土壤性状影响的差异。
耕作方式对土壤性质的影响,首先是改变了土壤的机械扰动强度和方式,致使土壤物理性质发生了变化,进而影响其他的土壤性状。而土壤颗粒的组成和粒径分布是土壤物理性质的基础,也是影响土壤结构、通气、保肥及保水等性能的关键因素之一,因此,土壤质地不仅对不同耕作方式下土壤性质的演化过程具有重要的影响[8, 9],而且也可能是造成大量的免耕对土壤性质影响研究结果不一致的重要原因之一,但这方面的研究尚鲜见报道。另一方面,现有大量“保护性耕作”的研究,都是以免耕加秸秆(或其他有机物)覆盖的综合作用的结果[10, 11],并不是单纯免耕的土壤效应。因此,按土壤质地区分研究对象,探讨不同质地稻田土壤性质对单纯免耕的响应差异性,对深化免耕影响土壤性质机理的认识,促进水稻土免耕实践的优化管理,均具有重要的意义。为此,本文以浙江绍兴地区水稻生产大田土壤为研究对象,选择当地典型的壤质和粘质两个系列水稻土,通过对常年翻耕和连续免耕1—6a的稻田土壤取样分析,探讨不同土壤质地条件下,稻田免耕对土壤理化性质变化的影响,以期揭示不同质地稻田土壤性状对免耕的响应规律差异,为优化稻田免耕技术管理提供科学依据。
1 材料与方法 1.1 供试土壤为了反映水稻生产大田条件下免耕措施对土壤性质的影响,本研究选取位于浙江省宁绍平原绍兴县皋埠镇、马山镇和东湖镇免耕单季水稻田为研究对象。取样地所在经纬度为120°38′E至120°42′E,29°57′N至30°05′N。该地区多年平均降雨量为1439 mm,年均气温为16.5 ℃。通过实地调查,选取稻田播种、施肥、水分等田间管理措施基本一致的田块为取样对象。当地农户所用的基肥主要为碳酸氢铵和过磷酸钙,少部分偶尔用复合肥;追肥以尿素为主。免耕稻田施肥方式为表施。供试土样采于2008 年11 月,即当地农户完成水稻收割后5—10 d;水稻秸秆均不还田。先根据当地土壤志,按照土壤质地的空间分布设置壤质和粘质两个水稻土初选样点系列,对初选样点土壤进行机械组成分析后再作进一步筛选;最后根据土壤质地和免耕年限的不同,选择常年翻耕和连续免耕1,2,3,4,5,6a的水稻田再进行进一步的分别取样(如表 1所示)。在每个选择田块中,采集0—10 cm和10—20 cm两个层次的土壤样品,分为环刀样,原状土样和化学分析样。每个田块上下两个土层的环刀样和原状土样均取3 次重复,化学分析样则采用“S”形取样法取多点混合样品。新鲜土壤运回实验室后,去除可见的未分解和半分解的动植物残体和较大的沙砾,置于室内自然风干、过筛,以供土壤理化性质分析。
质地Texture | 土种 Soil species | 免耕年限(采样田块数) NT duration years (the number of fields) | 砂粒 Sand/% (2—0.02 mm) | 粉粒 Silt/% (0.02—0.002 mm) | 粘粒 Clay/% (<0.002 mm) |
因为要求取样田块在种植制度、施肥方式和施用量、水稻播种时间、管理措施等方面基本一致,因此本研究中不同免耕年限的取样田块数目不等 | |||||
壤质Loam | 小粉泥,青紫泥, | 0(10) | 29.38±7.28 | 47.37±6.34 | 21.25±2.13 |
黄化青紫泥 | 1(15) | 30.93±6.91 | 46.93±5.32 | 20.23±3.45 | |
2(16) | 29.36±6.31 | 48.70±4.94 | 19.99±2.90 | ||
3(13) | 30.29±8.06 | 48.25±6.84 | 19.58±2.94 | ||
4(15) | 29.70±6.24 | 49.98±5.76 | 18.80±3.34 | ||
5(3) | 31.44±8.26 | 45.50±5.40 | 20.87±4.45 | ||
6(5) | 34.92±7.55 | 44.58±4.52 | 19.08±4.09 | ||
粘质Clay | 腐心青紫泥, | 0(8) | 24.85±5.39 | 44.15±4.61 | 29.28±3.87 |
黄泥砂田 | 1(5) | 27.43±4.34 | 43.03±1.94 | 27.82±2.55 | |
2(10) | 21.94±2.26 | 48.08±1.32 | 28.24±1.79 | ||
3(5) | 19.58±1.27 | 51.39±0.72 | 27.05±1.94 | ||
4(17) | 19.15±1.24 | 49.62±2.28 | 29.09±2.82 | ||
5(9) | 20.66±2.05 | 48.41±2.03 | 29.51±2.89 | ||
6(5) | 20.50±1.55 | 49.49±1.43 | 27.78±0.82 |
土壤紧实度采用SC900土壤紧实度仪(美国Spectrum technologies Inc.,SC-900 soil compaction meter)现场测定,紧实度值每2.5 cm土层深度测定一次,在每个田块选择3 个测点,每个测点测定一次。土壤全氮含量采用全自动快速定氮仪(德国 Elementar Analysensysteme GmbH,rapid N cube)测定。土壤其他理化性质均采用常规方法进行分析测定[12, 13],即土壤容重采用环刀法、土壤水稳性团聚体采用湿筛法、土壤砂粒、粉粒和粘粒含量采用吸管法、土壤有机质含量采用重铬酸钾容量法(外加热法)、碱解氮含量采用碱解扩散硼酸吸收法,速效磷含量采用NH4F-HCl-钼锑抗比色法,速效钾采样NH4OAC浸提-火焰光度法。土壤质地分类按照国际制质地分类标准。由于一般土壤中可溶性盐和碳酸盐在各级土粒中分布没有一定的规律性,故将盐酸洗失量不计入各粒级中。
1.3 数据分析采用Microsoft Excel 2003 软件对数据进行处理和绘图,采用SPSS16.0 统计软件中的最小显著性差异检验法(LSD)进行方差分析和多重比较(α=0.05)。本研究以连续两年免耕为时间节点进行土壤紧实度分析,为了避免采样田块数多的免耕年限所占的权重过大,采用将免耕1a和2a,3a和4a,5a和6a的紧实度值数据进行加权平均处理的方法,使相互间的权重相等,例如,免耕1a和2a的紧实度值数据进行加权平均处理,算法为[(NT11+ NT12+…+ NT1X)/X + (NT21+ NT22+…+ NT2Y)/Y]/2,其中NT11为免耕1a的第1块田的紧实度值,X代表免耕1a的田块数。免耕3a和4a、5a和6a的紧实度值数据加权平均以此类推。
2 结果与分析 2.1 免耕对两种质地水稻土物理性质的影响土壤机械组成分析结果表明,小粉泥、青紫泥、黄化青紫泥、腐心青紫泥和黄泥砂田等5 种供试水稻土样品的砂粒、粉粒与粘粒含量在各种耕作前后均未发生显著改变,样品标准差较小(表 1)。以此为基础,本研究根据粘粒含量的大小将研究的5 种土壤类型分为粘质(平均粘粒含量(28.64±2.65)%)和壤质(粘粒含量(19.88±3.13)%)两个系列,从而分析不同质地条件下土壤理化性质变化对免耕方式的响应规律。
本研究试区位于老水稻产区,水稻土剖面(犁底层)发育良好。供试土壤在传统耕作条件下犁底层一般位于地表以下12—20 cm[14]。对常年翻耕土壤表层紧实度的大量野外实测结果显示,两种典型质地(壤质和粘质)土壤表层紧实度均很低,大多小于200 kPa,但随深度而逐渐增加,并分别在17.5 cm和20 cm附近紧实度增加迅速(图 1),出现土壤紧实度从逐渐增加到迅速增加的转折点,此时土壤紧实度值约为375 kPa。参照Saiedi Rad等提出的判断方法[15],本文将土壤紧实度变化的转折点作为水田土壤耕作层与犁底层的划分标准,即紧实度<375 kPa 的水田表层土壤为耕作层土壤,而紧实度出现≥375 kPa时对应的土层为水田犁底层土壤。
![]() |
图 1 壤质和粘质水稻土在不同免耕条件下土壤剖面紧实度变化 Fig. 1 Variation of loam and clay soil penetration resistance under different tillage treatments |
从图 1可以看出,免耕条件下壤质和粘质稻田土壤平均紧实度值均显著高于常年翻耕土壤,且粘质稻田土壤紧实度值随着免耕年限的延长而显著增加(r2=0.90,P=0.001)。随着连续免耕年数的增加,紧实度<375 kPa的土层(即耕作层)深度递减,意味着多年连续免耕后粘质与壤质稻田土壤耕作层均明显变浅。不同质地稻田土壤紧实度值对免耕年限的响应规律具有明显的差异性。壤质水稻土在免耕5—6a后,土壤耕作层平均厚度从17.5 cm下降为12.5 cm,减少了5 cm左右(图 1);粘质水稻土在免耕5—6a后,土壤耕作层平均厚度减少了10—15 cm左右(图 1),厚度平均仅为5—10 cm左右。与壤质土壤相比,在相同的连续免耕条件下粘质水稻土紧实度增加、耕层变浅的趋势更为明显。与常年翻耕土壤相比,免耕6a后,壤质水稻土0—20 cm土层的紧实度值平均增加了32%,而粘质的平均增加了90%。随着免耕年限的延长,壤质土壤10—20 cm土层紧实度增加最为明显,而粘质土壤2.5—10 cm土层紧实度增加最为明显。
壤质和粘质稻田土壤容重在不同耕作条件下呈现的变化规律与土壤紧实度的变化相一致(图 2)。与常年翻耕土壤相比,连续免耕6a后壤质土壤0—10 cm土层的容重无明显变化,10—20 cm 土层的土壤容重则平均增加了13%。免耕6a后粘质土壤0—10 cm土层容重显著高于常年翻耕土壤,平均增加了26%,但是其10—20 cm土层容重变化不明显。与壤质土壤相比,免耕条件下粘质土壤表层紧实度和容重的增加趋势更为明显。
![]() |
图 2 免耕6a与常年翻耕条件下两种质地土壤各物理性质之比 Fig. 2 Ratio of soil physical properties with NT6 to those with CT NT6: no tillage applied continuously for 6 years; CT: conventional tillage |
农田土壤的水稳性团聚体结构对于土壤肥力具有重要的意义。常年翻耕通常使土壤团聚体的稳定性降低,除非土壤有机质保持在相对较高的水平[16]。本研究结果显示,传统耕作条件下壤质水稻土0—10 cm水稳性团聚体(>0.25 mm)含量高于粘质水稻土;壤质土壤在免耕6a后0—10 cm土层水稳性大团聚体含量平均增加了8%,10—20 cm 土层平均增加了4%;粘质水稻土水稳性大团聚体含量在免耕6a后0—10 cm土层增加显著,增长了28%(图 2)。因此,免耕对粘质稻田土壤结构的改善作用大于其对壤质土壤的改善。
2.2 免耕对两种质地水稻土有机质和碱解氮含量的影响不同质地稻田土壤有机质含量的变化也呈现了对连续免耕措施的不同响应。在无秸秆覆盖的条件下,随着免耕年限的延长,壤质和粘质土壤0—10 cm表层的有机质和碱解氮含量呈现相反的变化趋势,即壤质土壤总体呈现随免耕年限延长而提高的趋势(有机质:r2=0.59,P<0.05;碱解氮:r2=0.30,P=0.20,图 3),而粘质土壤中则总体呈现显著降低的趋势(有机质:r2=0.79,P<0.01;碱解氮:r2=0.60,P<0.05,图 3)。对10—20 cm土层而言,两种质地土壤的有机质和碱解氮含量均明显低于土壤表层,且随免耕年限的延长呈现降低的趋势(壤质:有机质:r2=0.60,P<0.05,碱解氮:r2=0.57,P=0.05;粘质:有机质:r2=0.39,P=0.13,碱解氮:r2=0.59,P<0.05)。因此,壤质土壤中0—10 cm和10—20 cm土层有机质和碱解氮含量的差异性随着免耕年限的延长而增加,而粘质土壤中两者的差异性则逐渐减少。
![]() |
图 3 不同质地土壤0—10 cm和10—20 cm土层有机质和碱解氮含量随免耕年限的变化情况 Fig. 3 Change of soil organic matter and available nitrogen content of two different texture soil 0—10 cm and 10—20 cm layer with no tillage duration years 不同字母代表同一土层不同免耕年限之间存在显著差异,P<0.05 |
在0—20 cm土层中,土壤速效磷含量随着免耕年限的延长有明显的增加趋势。从图 4可知,与常年翻耕土壤相比,连续免耕6a后壤质水稻土0—10 cm土层和10—20 cm土层速效磷含量分别增加了9%和43%,粘质稻田土壤分别增加了17%和47%(图 4)。从整个0—20 cm土层来看,连续免耕6a后壤质和粘质土壤速效磷含量分别平均增加了32%和39%。以上结果表明免耕有利于壤质和粘质稻田土壤速效磷的富集。究其原因,可能是连年免耕稻作使稻田土壤pH值上升而进一步趋近于中性(如壤质稻田土壤0—10 cm和10—20 cm土层pH值分别上升至6.21和6.59),降低了土壤固磷作用,在连年施用磷肥的条件下,提高了壤质稻田土壤有效磷含量。另外,由于连续免耕造成土壤耕作层变薄和犁底层抬高,使作物根系进一步向浅表土层聚集,对土壤磷素的吸收和耗损也更集中在表层(0—10 cm),导致10—20 cm土层的磷素含量增加更为明显。
![]() |
图 4 免耕6a与常年翻耕条件下两种质地土壤各化学性质之比 Fig. 4 Ratio of soil chemical properties with NT6 to those with CT |
两种质地土壤0—20 cm土层速效钾在连续免耕6a后分别下降了22%和8%。这可能是由于当地农民施肥主要以碳铵、尿素和磷肥为主,钾肥施用较少,且无秸秆覆盖,使得土壤钾素每年因作物生产而耗失,却缺乏补给,致使土壤速效钾含量下降。
3 讨论本研究结果表明,连续免耕处理导致壤质和粘质稻田土壤的紧实度值均显著提高,耕作层明显变浅。这主要是由于连续免耕土壤受到机械压实且缺乏扰动,使得土壤颗粒之间排列更加紧实[17]。然而,与壤质土壤相比,免耕条件下粘质土壤表层紧实度和容重的增加趋势更为明显。这是由于稻田土壤生态系统具有对环境变化的缓冲和自我调节的功能,而壤质土壤比粘质土壤具有更好的结构性,缓冲能力也高于粘质土壤[18]。但是,也有人观测到在免耕与常年翻耕条件下旱作粘质土壤(粘粒含量高达60.9%)的紧实度值差异不明显[19]。与旱作土壤相比,长期渍水的环境不仅提高了稻田土壤的承压受力,而且强化了土壤粘粒向下的淋移积淀作用和稻田土壤的还原性生境,使得长期连续免耕稻田土壤结构更加趋于紧实、犁底层发育过程得到进一步强化。还有研究表明,稻田连续免耕虽然增加了土壤紧实度,但也会因冻融作用、土壤动物活动和根系的伸展等缓解土壤压实,甚至使犁底层变得不明显[19, 20, 21, 22]。免耕对农田耕层土壤物理性质的影响是多方面的,最终土壤紧实度的变化是各种过程综合作用的结果。从本研究没有观测到土壤犁底层被削弱的结果可以看出,在我国南方粘质稻田连续免耕且无秸秆覆盖条件下,在导致土壤耕层紧实度增强和削弱的多方面作用中,紧实度增强作用是优势过程,这与Wolkowski等的研究结果相一致[23] 。因此,针对我国南方的粘质水稻土,适当进行间歇性的翻耕,缓解常年免耕引起的稻田耕作层变浅的问题,是很有必要的。
本研究结果表明,在没有秸秆覆盖的条件下,壤质稻田土壤表层的有机质含量随免耕年限的增长呈现出逐渐增加的趋势,而粘质稻田土壤0—10 cm土层有机质含量随免耕年限的增长而显著降低。由于没有作物秸秆的添加(覆盖),土壤中有机质含量的变化主要取决于作物根系的残留量及其腐殖化和矿化作用的平衡关系。当土壤中残留根系的腐殖化作用大于土壤腐殖质的矿化作用时,土壤有机质含量增加,反之亦反。在本研究的粘质水田土壤中,连年免耕导致土壤紧实度显著增加可能会减少作物根系的生长量,因此,在没有其他外源有机物料添加(如秸秆覆盖)的条件下,土壤有机质的矿化-腐殖化平衡有可能向着土壤腐殖化减弱的方向发展,从而导致了土壤有机质含量降低。另一方面,在保护性耕作条件下,由于缺乏土壤扰动和混合过程,土壤中大多有机碳并不是与土壤粘粒形成有机—无机复合体,而仅以颗粒有机质的形态被砂粒包围[24],使得土壤有机质与粘粒的相关性下降[25],这也是导致不同质地土壤表层有机质含量随免耕年限的变化趋势各异的原因之一。已有大量的研究表明,免耕与秸秆覆盖相结合有利于土壤有机质含量的提高[26, 27, 28],杨显云[29]的研究表明,经过3 季稻草覆盖后,土壤有机质含量增加23.5%,耕层土壤全氮、碱解氮含量等均有不同程度提高。因此,在我国南方粘质水稻土上推广免耕技术时,应与秸秆覆盖相结合,对稻草进行综合利用,以实现免耕稻田土壤的可持续利用。
4 结论连续免耕对不同质地稻田土壤理化性质的变化影响存在显著差异。在无秸秆覆盖条件下,连续免耕对粘质土壤0—20 cm土层紧实度的影响显著大于对壤质土壤的影响,使得粘质稻田土壤耕层变浅现象更为明显。壤质水稻土0—10 cm土层的有机质、碱解氮含量随着免耕年限的延长而提高,而粘质的则显著下降。以上结果表明,免耕方式对壤质水稻土的适宜性总体优于粘质的。土壤质地是影响稻田免耕土壤理化性质变化的重要因素之一,也可能是造成目前大量相关的对比性研究结果不一致的原因之一。因此,根据土壤质地的不同进行选择性地实施免耕技术,并结合秸秆覆盖及间歇性的翻耕等管理措施,是实现免耕技术可持续应用和农业生产可持续发展的重要保证。根据研究结果,综合考虑耕作效益和土壤性质的变化,建议我国南方的粘质水稻土至少应隔3—4a进行一次完全的翻耕,而对于壤质水稻土的翻耕间隔可以略长。
[1] | Wang X B, Cai D X, Hoogmoed W B, Oenema O, Perdok U D. Developments in conservation tillage in rainfed regions of North China. Soil and Tillage Research, 2007, 93(2): 239-250. |
[2] | Alvarez R, Steinbach H S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil and Tillage Research, 2009, 104(1): 1-15. |
[3] | Lima A C R, Hoogmoed W B, Pauletto E A, Pinto L F S. Management systems in irrigated rice affect physical and chemical soil properties. Soil and Tillage Research, 2009, 103(1): 92-97. |
[4] | Feng Y H, Zou Y B, Buresh R J, Xu G L, Ao H J, Wang S H. Effects of no-tillage and direct broadcasting on soil physical and chemical properties and growth and yield formation in hybrid rice. Acta Agronomica Sinica, 2006, 32(11): 1728-1736. |
[5] | Zhang X Z, Li T X, Yu H Y, Zhou J X, Wu D Y. Effects of long-term natural no-tillage on soil physiochemical properties in rice/wheat rotation systems. Journal of Soil and Water Conservation, 2006, 20(6): 145-147. |
[6] | Wu J F, Pan X H, Shi Q H, Qi Y X, Liu Z F, Hu J H. Effects of continuous no-tillage and cast-transplanting on soil physical, chemical and biological properties. Acta Pedologica Sinica, 2009, 46(6): 1132-1139. |
[7] | Zhang G S, Chan K Y, Li G D, Huang G B. Effect of straw and plastic film management under contrasting tillage practices on the physical properties of an erodible loess soil. Soil and Tillage Research, 2008, 98(2): 113-119. |
[8] | Liu H Z, Huang Q, Li K H, Lu X M, Cheng Y S, Fu H, Liu J. Soil physicochemical properties as affected by continuous no-tillage and scatteredplanting rice. Guangdong Agricultural Sciences, 2000, 27(5): 8-11. |
[9] | Campbell C A, Mcconkey B G, Biederbeck V O, Zentner R P, Curtin D, Peru M R. Long-term effects of tillage and fallow-frequency on soil quality attributes in a clay soil in semiarid southwestern Saskatchewan. Soil and Tillage Research, 1998, 46(3/4): 135-144. |
[10] | Wang X B, Wu H J, Dai K, Zhang D C, Feng Z H, Zhao Q S, Wu X P, Jin K, Cai D X, Oenema O, Hoogmoed W B. Tillage and crop residue effects on rainfed wheat and maize production in northern China. Field Crops Research, 2012, 132(14): 106-116. |
[11] | Sommer R, Ryan J, Masri S, Singh M, Diekmann J. Effect of shallow tillage, moldboard plowing, straw management and compost addition on soil organic matter and nitrogen in a dryland barley/wheat-vetch rotation. Soil and Tillage Research, 2011, 115-116(1/2): 39-46. |
[12] | Department of Soil Physics, Institute of Soil Science, Chinese Academy of Sciences. Determination of Soil Physical Properties. Beijing: Science Press, 1978: 11-86. |
[13] | Bao S D. Soil and Agricultural Chemistry Analysis. Beijing: Agriculture Publication, 1999: 30-109. |
[14] | Shaoxing County Soil Survey Office. Soil of Shaoxing County in Zhejiang province. Hangzhou: Shaoxing County Soil Survey Office, 1984: 59-89. |
[15] | Rad M S, Neshat S Z, Manesh A M. Analysis on the formation causes of plowpan in dryland (Iran ldaorasan)// Proceedings of international symposium on China mechanized dryland farming and water-saving Agriculture. Beijing: China Agricultural University Press, 2000: 258-262. |
[16] | Shao M A, Wang Q J, Huang M B. Soil Physics. Beijing: Higher Education Press, 2006: 30-31. |
[17] | Chen X W, Zhang X P, Liang A Z, Jia S X, Shi X H, Fan R Q, Wei S C. Effects of tillage mode on black soil's penetration resistance and bulk density. Chinese Journal of Applied Ecology, 2012, 23(2): 439-444. |
[18] | Huang X X. Soil self-adjusting and minimum/no-tillage system. Chinese Journal of Soil Science, 1987, 18(3): 111-114. |
[19] | Chen Y, Cavers C, Tessier S, Monero F, Lobb D. Short-term tillage effects on soil cone index and plant development in a poorly drained, heavy clay soil. Soil and Tillage Research, 2005, 82(2): 161-171. |
[20] | Kozlowski T T. Soil compaction and growth of woody plants. Scandinavian Journal of Forest Research, 1999, 14(6): 596-619. |
[21] | Chen X W, Wang N, Liu Y J, Zhang X P, Liang A Z, Jia S X, Shi X H, Fan R Q. Impacts of Freezing-Thawing Cycle on soil penetration resistance under different tillage practices in black soil. Bulletin of Soil and Water Conservation, 2012, 32(6): 55-60. |
[22] | Drewry J J. Natural recovery of soil physical properties from treading damage of pastoral soils in New Zealand and Australia: A review. Agriculture, Ecosystems and Environment, 2006, 114(2/4): 159-169. |
[23] | Wolkowski R P, Lowery B. Soil Compaction: Causes, Concerns, and Cures. Madison: Cooperative Extension Publishing, 2008: 7-7. |
[24] | Angers D A, N'dayegamiye A, Cté D. Tillage-induced differences in organic matter of particle-size fractions and microbial biomass. Soil Science Society of America Journal, 1993, 57(2): 512-516. |
[25] | Angers D A, Bolinder M A, Carter M R, Gregorich E G, Drury C F, Liang B C, Voroney R P, Simard R R, Donald R G, Beyaert R P, Martel J. Impact of tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern Canada. Soil and Tillage Research, 1997, 41(3/4): 191-201. |
[26] | Dolan M S, Clapp C E, Allmaras R R, Baker J M, Molina J A E. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil and Tillage Research, 2006, 89(2): 221-231. |
[27] | Malhi S S, Lemke R, Wang Z H, Chhabra B S. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil and Tillage Research, 2006, 90(1/2): 171-183. |
[28] | Li H, Zhang J K, Jiang C S, Hao Q J, Wu Y, Xie D T. Long-term tillage effects on soil organic carbon and microbial biomass carbon in a purple paddy soil. Acta Ecologica Sinica, 2012, 32(1): 247-255. |
[29] | Yang X Y. Influence of non-tillage and mulching rice straw on soil fertility and yield of direct seeding oil rape. Soils and Fertilizers, 2001, 38(6): 38-41. |
[4] | 冯跃华, 邹应斌, Buresh R J, 许桂玲, 敖和军, 王淑红. 免耕直播对一季晚稻田土壤特性和杂交水稻生长及产量形成的影响. 作物学报, 2006, 32(11): 1728-1736. |
[5] | 张锡洲, 李廷轩, 余海英, 周建新, 吴德勇. 水旱轮作条件下长期自然免耕对土壤理化性质的影响. 水土保持学报, 2006, 20(6): 145-147. |
[6] | 吴建富, 潘晓华, 石庆华, 漆英雪, 刘宗发, 胡金和. 水稻连续免耕抛栽对土壤理化和生物学性状的影响. 土壤学报, 2009, 46(6): 1132-1139. |
[8] | 刘怀珍, 黄庆, 李康活, 陆秀明, 程永盛, 付华, 刘军. 水稻连续免耕抛秧对土壤理化性状的影响初报. 广东农业科学, 2000, 27(5): 8-11. |
[12] | 中国科学院南京土壤研究所土壤物理研究室. 土壤物理性质测定法. 北京: 科学出版社, 1978: 11-86. |
[13] | 鲍士旦. 土壤农化分析 (第三版). 北京: 中国农业出版社, 1999: 30-109. |
[14] | 绍兴县土壤普查办公室. 浙江省绍兴县土壤志. 杭州: 绍兴县土壤普查办公室, 1984: 59-89. |
[15] | Rad M Saiedi, Neshat S Zarif, Manesh A Mohseni. 旱作地区(伊朗ldaorasan省)犁底层及其成因研究 // 中国机械化旱作节水农业国际研讨会论文集. 北京: 中国农业大学出版社, 2000: 258-262. |
[16] | 邵明安, 王全九, 黄明斌. 土壤物理学. 北京: 高等教育出版社, 2006: 30-31. |
[17] | 陈学文, 张晓平, 梁爱珍, 贾淑霞, 时秀焕, 范如芹, 魏守才. 耕作方式对黑土硬度和容重的影响. 应用生态学报, 2012, 23(2): 439-444. |
[18] | 黄细喜. 土壤自调性与少免耕法. 土壤通报, 1987, 18(3): 111-114. |
[21] | 陈学文, 王农, 刘亚军, 张晓平, 梁爱珍, 贾淑霞, 时秀焕, 范如芹. 不同耕作处理下冻融对农田黑土硬度的影响. 水土保持通报, 2012, 32(6): 55-60. |
[28] | 李辉, 张军科, 江长胜, 郝庆菊, 吴艳, 谢德体. 耕作方式对紫色水稻土有机碳和微生物生物量碳的影响. 生态学报, 2012, 32(1): 247-255. |
[29] | 杨显云. 稻草覆盖免耕直播油菜对地力与产量的影响. 土壤肥料, 2001, 38(6): 38-41. |