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Abstract: Vegetation carbon storage estimation is an important part of natural resources monitoring. Remote sensing

technology combined with ground sample can obtain the spatial continuous distribution of vegetation carbon reserves in the

EETE WA HETE AT A (17A225) ; HE HARMEE AT B (31971578 ) 5 15 4 Aol BHE 013 & 11 ( XLK201986) 5 Kb i BH LT
K131 H ( kq2004095)

175 B H#5:2021-02-26; ¥ 2% tH kit B 8 :2022-02- 11

# IAMEH Corresponding author. E-mail; sunhua@ csuft.edu.cn

http ://www.ecologica.cn



4934 A E = 2%

region, which makes up for the deficiency of the traditional artificial sampling survey estimation. However, most of the
existing parameter and nonparameter remote sensing estimation models ignore the relationship between sample data variation
and spatial autocorrelation. In this study, Landsat 8 OLI images were used as data sources to exiract remote sensing
variables, combined with the survey data of vegetation carbon storage in ShenZhen. Three metrics, including Akaike
Information Criterion corrected ( AICc) , maximum spatial autocorrelation distance (MSAD) , and Cross-Validation (CV)
were used to determine the optimal bandwidth. Different geographically weighted regression ( GWR) models inversing
carbon reserve were constructed using Gaussian, Bi-square and Exponential as kernel function, respectively. Compared with
the multiple linear regression (MLR), the optimal model was selected to make the spatial distribution map of vegetation
carbon storage in Shenzhen. The results showed that the overall precision of the GWR models were better than that of the
MLR model. The coefficient of determination (R*) of the GWR models were higher than that of MLR model, and the root
mean square error ( RMSE) and mean absolute error ( MAE) were reduced significantly. The selection of bandwidth and
kernel function can have significant influence on the estimation results of GWR model. Among the constructed GWR
models, the GWR model with cross-validation determined bandwidth and exponential as the kernel was the best, with R* of
0.697 and RMSE of 10.437 Mg C/hm*, which increased by 13.87% to 32.28% on model accuracy compared with other
models. And the variable regression parameters of this model had significantly spatial non-stationarity, which could better
reflect spatial heterogeneity. Combined with the optimal GWR model and the spatial distribution of vegetation types, the
carbon storage of vegetation in Shenzhen was estimated, and the carbon storage values were between 1.63 and 60.95 Mg C/
hm’. The high and low carbon storage were mainly distributed in forest and grassland areas, which was basically consistent
with the vegetation coverage in Shenzhen. Considering the spatial heterogeneity of variables, the GWR model based on
bandwidth optimization can obtain more reasonable spatial distribution of vegetation carbon storage to some extent, which

can provide a method and technical reference for remote sensing estimation of vegetation carbon storage in Shenzhen.

Key Words: remote sensing inversion; vegetation carbon storage; local model; geographically weighted regression;
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Fig.1 Geographical location and sample distribution of the study area
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Table 1 Biomass conversion parameters and carbon fraction of main dominant tree species

B4 ] ) p—
Tree species group /(Mg/m*) /(Mg) Carbon fraction
2K Cunninghamia lanceolata 0.4652 19.1410 0.5127
L Pinus massoniana 0.5034 20.5470 0.5271
Fie FEucalyptus robusta 0.8873 4.5539 0.4748
&R Cinnamomum camphora 0.9292 6.4940 0.4916
ME Acacia confusa 0.9292 6.4940 0.4666
ARAf Schima superba 0.9292 6.4940 0.5115
#5:2& Quercus 1.1453 8.5473 0.4798
HEHAZE Other pines 0.5292 25.0870 0.4963
HEHKIFZE Other soft broad-leaved trees 0.9292 6.4940 0.4502
HE 2 Other hard broad-leaved trees 0.9292 6.4940 0.4901
£ R Mixed needle 0.8136 18.4660 0.4893
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Table 2 Expressions of the adopted remote sensing variables

ek IR 475 HHAK 225 30k

Vegetation index Abbreviation Calculation formula Reference
e NERT Y 1 )

,i,%l) hﬂﬁwﬁaﬁ‘ . SAVI (NIR-Red) (1+0.5) / (NIR+Red+0.5) [13]

Soil adjusted vegetation index

s N

B EVI 2.5(NIR-Red) / (NIR+6.0Red—7.5Blue+1) [33]

Enhanced vegetation index

A — AR E £

Normalized difference vegetation index NDVI (NIR-Red) 7 (NIR+Red) [33]
1= R B g e R
REUHBLHBUR o ARVI [ NIR- (Red-Blue) 1/ [ NIR+(Red-Blue) ] 33
Atmospherically resistant vegetation index
B IEH — 22 (EAE B R AL MNDVI NIR—Red(l SWIR1-SWIRI ) 133]
Modified normalized difference vegetation index NIR+Red SWIR1,,..—SWIRL, .
FARE S ER L E R
ERHBAR L L RGVI (Red-Green) / (Red+Green) [33]
Red-green vegetation index
I L L <k e 1
Wﬁ&mﬁiﬂ%ﬁ*ﬂ%& L SR, Band,/Band,, (i,j=1,2,...,7,i#)) [33]
Two-band simple ratio vegetation index v !
— Iy P i H K
“ﬁﬁxwﬁﬁmﬂﬁ o SR, Band,/ (Band +Band, ) , (i,j,k=1,2,...,7,i#j#k,j<k) [33]
Three-band simple ratio vegetation index v !
gy
LB B, Band;, (i=1,2,--,7) [33]

Band reflectance

1.3.3 @ JEL i

HHRA UE‘ZE%ZEE G b AE B A B 22 [A] 1Y Pearson AH OC 28 $ICHE [ | e 9% 5 A A9 ik it it Sl 5 AH DG 19 A8
i R HE L MIH ST AR R, W, T I BR AR & 2 ) A S et | 51 A5 22 B ik K F (variance inflation
factor,V1F>”*‘Jiﬁﬁ/\é;%rimé‘liﬁﬁ BN 10, BRAT A& TR 2L AR A f
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Table 3 Variable selection results

A bk E 4 brifEiR 1k 4+
Variable Coefficient Standard error Variance inflation factor
I Constant 237.602 40.761

= P B LU EAE B EL SRy, -189.193 27.947 4.117

WU B LU AP B 1 50 SR -201.556 51.110 2.692

B AR L SR, -39.908 12.776 2.475

SR ; HWAEAH B FE %X Simple ratio vegetation index

B2 S5 R ALCe 5 CV 38T 58, 45 G A A% pREH E GWR ALY s i 45 A4 7 i ith 4k 81, &1 2 il
LRPITRT R A 58RI A HE TNy AlCe HEE CV (HARART 98, %, DL Gaussian Bisquare Fll Exponential % FRi%%
FIFH AlCe Bii5E BT 55 70 910 1153628131 F1 11770, FI ] CV B 5E e LA 5543 51k 6347 17081 H1 4519,
T I A S PR RO 2 E MSAD AR S 444 28000, 3 T AN [l 5 v 5 v TS e Uy Sa AR 22 B K

g 1520 ) 1520 ¢ ) 1520 .
= g AlICc + Gaussian AICc + Bi-square AICc + Exponential
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Fig.2 Bandwidth selection results of using AICc and CV
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(MAE) 9 11.721 Mg C/hm?* , HAEAIFE 2% 1) Moran 1 24 0.172( P<0.01) , 156 B R 5% 24 75 2% (1] oh il 20 A5 IF R 58
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POk SRR R B S AR I AN R O CR . B ATCe B84 5, DL [FIAZ BB A #E Y 3 4> GWR 45
FIYERG E [ JC B & 2255 (B L) Exponential A% pREUKS # ) GWR AR FI5R 22 4775 1 28 1E A0 5 ; A FH MSAD #f i&
HSET, DL Bi-square A% pREUIT ALY GWR BRSO S, HILABIARYSR 22 52 AL 20 A1 ; B CV 18 7 SE i)
HEAY GWR ST T I 50 SR 38 3k A T o WY S B 2 D7 VR BT A R GWR BERL ) TR EEY 3 > GWR ARSI
Moran I Z6XH{EX)/NF 0.05( P>0.1) BRI 220 B3 AAE, Hid XL CV 5 Exponential 4% pBREZH A F4
B GWR RERIRC R S 4k, H R* 9 0.697 ,RMSE 4 10.437 Mg C/hm?® ,MAE 4 7.401 Mg C/hm?,5%2% Moran I H-
0.036( P>0.1) , AR fy TN 25 S 0 42300 S, ELASS RIS, 25 2 (B AH B 7, B ARSR MY GWR BARLA, 1T
BR2E M Bk 25 FAHCRE B (IR F MLR B, 30Ot FAEA IR B 5 B LA A E ) XS 5 7 @8
1 BFARE MR EAT — A7 A INAS AT I 5 A 3K BB — g i B it v T A 3 O A 0008 555 8% 25 1 5 [ 1 A
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Table 4 Estimation accuracy and residual spatial autocorrelation of models

" TR TR . BT ARiR S A 4t o 5 . .
selection (Mg C/hm?) (Mg C/hm?)
ﬁigéﬁﬁmﬁ 0.298 15.886 11.721 0.172 0.001 4.290
i FRH0 A BT AlCe Gaussian 0.451 14.051 10.228 0.059 0.071 1.550
GWR Bisquare 0.448 14.084 10.278 0.055 0.085 1.457
Exponential 0.462 13.904 10.072 0.076 0.038 1.974
MSAD Gaussian 0.339 15.412 11.281 0.145 0.001 3.637
Bisquare 0.449 14.073 10.271 0.055 0.086 1.443
Expunential 0.363 15.130 11.026 0.134 0.001 3.371
CV Gaussian 0.591 12.118 8.749 -0.025 0.364 -0.424
Bisquare 0.563 12.536 9.087 -0.019 0.421 -0.293
Exponentia] 0.697 10.437 7.401 -0.036 0.251 -0.684

MLR ; £ 64 P [71 3 Multiple linear regression; GWR ; #H AL M4 Geographically weighted regression; AlCc: £ IF Akaike fr B #E N Akaike
information criterion corrected ; CV ; 38 XEGIE Cross-validation ; MSAD . 5 k25 8] FH A& B Maximum spatial autocorrelation distance ; RMSE ; ¥4 J5 # i%
% Root mean square error; MAE ; E 445 5%F 12 22 Mean absolute error

P 3 itk fit e 52 D0 AEL-55 A A B S0 AR A 4005 &, 25 AR B A A AE — e I (B R Al S s (AR A B . % ik
fiti i KT 50 Mg C/hm” FAFEHE , &AL 776 ] b 1) s RLARAG 5 X T B i B (VR (B0 325k A7 A B Al 4, DR 2588
Ko WEAb b Tk it AR, A AL AR 25 SR A A D B (A R X EEAS [ A L 40 4 it 2 5 AR it 46
%) O 225 2 B2, MR B0 ffg 25 A5 2 S K T4 GWR AR AL F) fi 2 2 2 5 DA TET U 40065 il Ze A R B o3 AR I LR
AHHET MLR #i8  GWR HE8Y 1 Bl 50 o B2 s R AR T LG M4y il AT AlCe g 7 SE A8 /L 1 3 4>
GWR AR AL S 55 P00 F80 A 40 A AHBLRE 88y, T I 26 1% 25 5% R T MSAD 2 47 9 | LA Gaussian
Exponential A% PRI A GWR LA B R* i 3 5 T MLR #&L8 {H LG KR A, FL 45 B - A A7 76 1
WR2ER, FIH CV 8 S g n) GWR AR H M2 & RS g oWl AR TR e, Horp, L
CV 5 Exponential % pREUZH S HEA GWR AL HBUS /01 o B8, TN 45 R 5 S 25 2R s s PR B 0/
2.3 ARk

XA GWR BT [ A S 400 28 [ R PR A 5, W]l S e £ 7 vk A 1) GWR B8, Sk
PR AU (B 4) o SR AICe B2 SEREE R GWR FiR) 400 AR it SR, FIZSiE SR, 1 R EAG 1
{HARARIR FE Y KT MLR B AR ERE A8 i SRs, BAEAE — 8 M2 R PARE  (H T 135 5 2R MSAD #
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Fig.3 Fitting results of vegetation carbon storage estimation models
MLR : 276 PE[EI ) Multiple linear regression; GWR ; B JITAL B 5 Geographically weighted regression; MSAD : ¢ A %5 [8] H AH & B 2 Maximum

spatial autocorrelation distance
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Fig.4 Stationary test of relationship
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Fig.5 The spatial distribution of regression parameter coefficients of the optimal GWR model
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Fig.6  Spatial distribution of vegetation carbon stocks in the
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