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基于带宽优选地理加权回归模型的深圳市植被碳储量
反演
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摘要：植被碳储量估测是自然资源监测的重要内容，遥感技术结合地面样地进行反演可以获得区域范围内植被碳储量的空间连

续分布，弥补了传统人工抽样调查估测的不足。 然而，现有的参数和非参数遥感估测模型大多忽略了样地数据的变异与空间自

相关关系。 研究以 Ｌａｎｄｓａｔ ８ ＯＬＩ 影像为数据源提取遥感变量，结合植被碳储量实测调查数据，利用最小信息准则（ＡＩＣｃ）、最大

空间自相关距离（ＭＳＡＤ）和交叉验证（ＣＶ）分别确定最优带宽，组合 Ｇａｕｓｓｉａｎ、Ｂｉ－ｓｑｕａｒｅ 和 Ｅｘｐｏｎｅｎｔｉａｌ 核函数构建地理加权回

归（ＧＷＲ）模型估算深圳市植被碳储量，并与多元线性回归（ＭＬＲ）进行比较，选择最优模型绘制深圳市植被碳储量空间分布图。

研究结果表明，ＧＷＲ 模型整体精度优于ＭＬＲ 模型，ＧＷＲ 模型的决定系数（Ｒ２）均高于ＭＬＲ 模型，且均方根误差（ＲＭＳＥ）和平均

绝对误差（ＭＡＥ）显著降低。 带宽和核函数的选择对 ＧＷＲ 模型估测结果产生了显著影响。 以 ＣＶ 确定带宽、Ｅｘｐｏｎｅｎｔｉａｌ 为核函

数组合构建的 ＧＷＲ 模型效果最佳，其 Ｒ２为 ０．６９７，ＲＭＳＥ 为 １０．４３７ Ｍｇ Ｃ ／ ｈｍ２，相比其它模型精度上升了 １３．８７％—３２．２８％，且变

量回归参数均存在显著空间非平稳性，能较好反映空间异质性。 结合最优 ＧＷＲ 模型和植被类型空间分布估算深圳市植被碳

储量，得到其碳储量值在 １．６３—６０．９５ Ｍｇ Ｃ ／ ｈｍ２之间，其中高值和低值主要分布于森林和草地区域，与深圳市植被覆盖情况基

本一致。 ＧＷＲ 模型考虑了变量空间异质性，基于带宽优选的 ＧＷＲ 模型一定程度上能获得更合理的碳储量空间分布，能为深圳

市植被碳储量遥感估算提供方法与技术参考。
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ｃａｒｂｏｎ ｓｔｏｒａｇｅ ｏｆ ｖｅｇｅｔａｔｉｏｎ ｉｎ Ｓｈｅｎｚｈｅｎ ｗａｓ ｅｓｔｉｍａｔｅｄ， ａｎｄ ｔｈｅ ｃａｒｂｏｎ ｓｔｏｒａｇｅ ｖａｌｕｅｓ ｗｅｒｅ ｂｅｔｗｅｅｎ １．６３ ａｎｄ ６０．９５ Ｍｇ Ｃ ／
ｈｍ２ ． Ｔｈｅ ｈｉｇｈ ａｎｄ ｌｏｗ ｃａｒｂｏｎ ｓｔｏｒａｇｅ ｗｅｒｅ ｍａｉｎｌｙ ｄｉｓｔｒｉｂｕｔｅｄ ｉｎ ｆｏｒｅｓｔ ａｎｄ ｇｒａｓｓｌａｎｄ ａｒｅａｓ， ｗｈｉｃｈ ｗａｓ ｂａｓｉｃａｌｌｙ ｃｏｎｓｉｓｔｅｎｔ
ｗｉｔｈ ｔｈｅ ｖｅｇｅｔａｔｉｏｎ ｃｏｖｅｒａｇｅ ｉｎ Ｓｈｅｎｚｈｅｎ． Ｃｏｎｓｉｄｅｒｉｎｇ ｔｈｅ ｓｐａｔｉａｌ ｈｅｔｅｒｏｇｅｎｅｉｔｙ ｏｆ ｖａｒｉａｂｌｅｓ， ｔｈｅ ＧＷＲ ｍｏｄｅｌ ｂａｓｅｄ ｏｎ
ｂａｎｄｗｉｄｔｈ ｏｐｔｉｍｉｚａｔｉｏｎ ｃａｎ ｏｂｔａｉｎ ｍｏｒｅ ｒｅａｓｏｎａｂｌｅ ｓｐａｔｉａｌ ｄｉｓｔｒｉｂｕｔｉｏｎ ｏｆ ｖｅｇｅｔａｔｉｏｎ ｃａｒｂｏｎ ｓｔｏｒａｇｅ ｔｏ ｓｏｍｅ ｅｘｔｅｎｔ， ｗｈｉｃｈ
ｃａｎ ｐｒｏｖｉｄｅ ａ ｍｅｔｈｏｄ ａｎｄ ｔｅｃｈｎｉｃａｌ ｒｅｆｅｒｅｎｃｅ ｆｏｒ ｒｅｍｏｔｅ ｓｅｎｓｉｎｇ ｅｓｔｉｍａｔｉｏｎ ｏｆ ｖｅｇｅｔａｔｉｏｎ ｃａｒｂｏｎ ｓｔｏｒａｇｅ ｉｎ Ｓｈｅｎｚｈｅｎ．

Ｋｅｙ Ｗｏｒｄｓ： ｒｅｍｏｔｅ ｓｅｎｓｉｎｇ ｉｎｖｅｒｓｉｏｎ； ｖｅｇｅｔａｔｉｏｎ ｃａｒｂｏｎ ｓｔｏｒａｇｅ； ｌｏｃａｌ ｍｏｄｅｌ； ｇｅｏｇｒａｐｈｉｃａｌｌｙ ｗｅｉｇｈｔｅｄ ｒｅｇｒｅｓｓｉｏｎ；
Ｌａｎｄｓａｔ ８

城市植被作为城市生态系统的重要组成部分，对维持城市碳氧平衡、改善城市小气候至关重要［１］。 随着

碳达峰、碳中和等目标的提出，城市植被在碳汇功能中的作用得到广泛关注［２—３］。 植被碳储量作为评估植被

碳收支的重要参数，能直接衡量植被固碳增汇能力，是生态系统服务功能的直接体现［４］。 迅速、准确地估算

城市植被碳储量对评估植被碳汇价值、管理城市生态环境和可持续发展具有重要意义［５］。 常用的碳储量估

测方式是样地清查法，即利用样地清查数据直接或间接测定生物量，再乘以相应的碳率系数推算得到碳储

量［６—７］。 该方法虽能得到较为准确的碳储量数据，但对植被破坏较大、费时费力且获取信息有限。 遥感技术

的迅速发展为大尺度、多时相的植被信息获取提供了便捷，使快速、大区域地估算城市植被碳储量成为

可能［８—９］。
从现有研究来看，光学传感器、激光雷达和雷达数据均可以单独或联合用于植被碳储量估算。 激光雷达

和合成孔径雷达具有直接测量森林垂直结构的能力，能克服光学遥感中的光谱饱和现象，对植被生物物理和

结构参数表现出更高的灵敏度，但较高的使用成本和复杂的数据处理步骤限制了其在大尺度的应用［１０—１１］。
光学遥感数据以其长时间序列、全球区域尺度覆盖和高重访周期的特点，在大区域尺度的植被监测中有不可

替代的作用。 常见的光学遥感影像有空间分辨率较低的 ＭＯＤＩＳ、ＡＶＨＲＲ 数据，中空间分辨率的 Ｌａｎｄｓａｔ 系列

以及高空间分辨率的 ＧＦ、ＱｕｉｃｋＢｉｒｄ 数据［１２］。 其中， Ｌａｎｄｓａｔ ８ 卫星数据具备全球覆盖能力，获取质量稳定、公
开免费，提取植被参数及物种群落特征等信息较为准确，成为估算植被碳储量的主要光学遥感数据源

之一［３，１３］。
基于遥感影像的植被碳储量估测模型以参数或非参数模型为主［１４—１５］，参数模型如多元线性回归

（Ｍｕｌｔｉｐｌｅ Ｌｉｎｅａｒ Ｒｅｇｒｅｓｓｉｏｎ，ＭＬＲ）、逻辑回归等，简单高效但通常难以应对复杂问题。 常用的非参数模型有随

机森林、ｋ 最近邻、支持向量机等，其模型稳健、可变性高，但需要较多训练样本且预测结果难以解释。 在实际

４３９４ 　 生　 态　 学　 报　 　 　 ４２ 卷　



ｈｔｔｐ： ／ ／ ｗｗｗ．ｅｃｏｌｏｇｉｃａ．ｃｎ

调查中，由于地形、海拔、气候等因素的影响，植被调查数据往往与其地理位置有关，在空间上表现出明显的异

质性［１６—１７］。 城市景观的复杂性使得植被分布具有更高的破碎化程度，进一步加剧了这种空间异质性。 上述

模型大多忽略了样地数据的空间变异，掩盖了变量间的局部差异性，从而增加实际估测中的误差，最终造成不

合理的局部空间分布估测结果［１８］。 为了探索数据的空间特性，地理加权回归 （ Ｇｅｏｇｒａｐｈｉｃａｌｌｙ Ｗｅｉｇｈｔｅｄ
Ｒｅｇｒｅｓｓｉｏｎ，ＧＷＲ）模型应运而生［１９—２０］。 ＧＷＲ 将数据的空间特性纳入模型估测中，为分析回归关系的空间特

征创造了条件［２１］。 近年来，ＧＷＲ 模型被广泛用于气象学、生态学、林学等多个领域［２２—２４］，并取得较好的应用

效果。 ＧＷＲ 模型为局部模型，它考虑了变量的空间异质性，将全局参数分解为局部参数进行估计，具有比传

统全局模型获得更合理的碳储量局部空间分布的潜力。 空间核函数和带宽是决定 ＧＷＲ 模型估测效果的重

要参数［２５—２６］。 然而，在利用 ＧＷＲ 进行植被碳储量反演时，多选用单一核函数及带宽确定方式，少有研究对

比不同核函数及不同带宽选择方式在 ＧＷＲ 模型拟合、系数估计及模型残差空间特征上的差异。
深圳市是我国 ７ 大碳排放权交易试点之一，近几年全面启动了“国家森林城市”高质量建设工作，准确估

算其城市植被碳储量对深圳市城市建设、生态发展规划及实现碳达峰、碳中和目标意义重大［２７—２８］。 研究以广

东省深圳市为研究区，基于 Ｌａｎｄｓａｔ ８ ＯＬＩ 遥感影像和植被碳储量野外调查数据，采用多个带宽确定方法并结

合不同核函数分别构建植被碳储量遥感反演 ＧＷＲ 模型，并与 ＭＬＲ 进行比较。 最终选取最优模型进行研究

区植被碳储量反演制图，以期为我国城市植被碳储量遥感估算提供方法和技术参考。

１　 材料与方法

１．１　 研究区概况

深圳市地处广东省中南沿海地区，位于 １１３°４３′—１１４°３８′Ｅ，２２°２４′—２２°５２′Ｎ 之间（图 １）。 全市面积

１９９７．４７ ｋｍ２，平均海拔 ７０—１２０ ｍ。 全境地势东南高、西北低，东南部主要为低山，中部和西北部为丘陵，西南

部为冲击平原。 境内母岩以花岗岩为主，东部和北部有较大面积砂页岩分布。 研究区属亚热带海洋性气候，
年平均气温 ２２．４℃；雨量充沛，年平均降水量约 １９３３ ｍｍ，年平均湿度 ７２．３％；日照时间长，平均年日照时数约

２１２０ ｈ。 热带常绿季雨林与南亚热带季风常绿阔叶林为该市的地带性植被。 深圳市自然环境优美，全市建成

区绿化覆盖率 ４５％，人均公共绿地面积 １６．０１ ｍ２，森林面积 ７９７ ｋｍ２，森林覆盖率达 ４０．２１％。

图 １　 研究区位置及样地分布图

Ｆｉｇ．１　 Ｇｅｏｇｒａｐｈｉｃａｌ ｌｏｃａｔｉｏｎ ａｎｄ ｓａｍｐｌｅ ｄｉｓｔｒｉｂｕｔｉｏｎ ｏｆ ｔｈｅ ｓｔｕｄｙ ａｒｅａ

１．２　 数据获取及处理

１．２．１　 植被调查样地数据

参考 ２０１４ 年深圳市森林资源规划设计调查数据，根据各地类面积及其比例，按照分层随机抽样原则，在
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研究区内确定大小为 ２５．８ ｍ×２５．８ ｍ 的样地 １８０ 个。 其中，林地 １４０ 个、草地 ７ 个及建设用地 ３３ 个（图 １）。
外业调查分别在 ２０１４ 年、２０１６ 年和 ２０１８ 年完成。 在实际调查中，地类为林地的样地分为乔木层、灌木层和

草本层分别计算碳储量，最终求和得到样地碳储量。 乔木层调查样方大小为 ２５．８ ｍ×２５．８ ｍ，对样地内胸径大

于 ５ ｃｍ 的单木进行每木检尺，测量其胸径、树高及冠幅；灌木层调查样方大小为 ２ ｍ×２ ｍ，均匀布设 ５ 个样

方，记录树种、树高、地径及盖度；草本层调查样方大小为 １ ｍ×１ ｍ，均匀布设 ５ 个样方，记录其种类、平均高及

盖度。 地类为草地的样地调查方法及碳储量计算方法与林地中的草本层一致。 为了获得更准确的实际植被

分布，建设用地中包含了部分林木，如行道树、绿化带等以及部分草本，也将被调查以及统计。
１．２．２　 Ｌａｎｄｓａｔ ８ ＯＬＩ 遥感数据

综合考虑影像与采样时间的邻近、云量等因素，通过美国地质调查局官网（ｈｔｔｐ： ／ ／ ｇｌｏｖｉｓ．ｕｓｇｓ．ｇｏｖ ／ ）获取

了覆盖研究区的 ２ 景 Ｌａｎｄｓａｔ ８ ＯＬＩ 遥感影像，其成像时间分别为 ２０１４ 年 １０ 月 ８ 日和 ２０１４ 年 １０ 月 １５ 日，轨
道号分别为 ＰＡＴＨ １２１ ／ ＲＯＷ ４４ 和 ＰＡＴＨ １２２ ／ ＲＯＷ ４４，空间分辨率为 ３０ ｍ。 利用 ＥＮＶＩ ５．３ 软件对 ２ 景

Ｌａｎｄｓａｔ ８ ＯＬＩ 遥感影像进行辐射定标、ＦＬＡＡＳＨ 大气校正和影像镶嵌等预处理后，运用深圳市行政矢量边界

裁剪得到研究区多光谱影像。
１．２．３　 植被类型空间分布

根据 ２０１４ 年深圳市森林资源规划设计调查数据（二类调查数据），结合 ０．５ ｍ 空间分辨率遥感影像进行

人工解译，得到植被类型空间分布矢量数据。 利用 ＡｒｃＧＩＳ １０．６ 软件提取研究区林地、草地等植被覆盖区域矢

量数据，用于后续制作研究区植被碳储量空间分布图。
１．３　 研究方法

１．３．１　 样地植被碳储量估算

利用样地调查数据，结合广东省主要树种和软硬阔树种二元材积表［２９］ 分树种计算单木材积后累加得到

该树种蓄积量并转换成单位面积蓄积量；根据《全国林业碳汇计量与监测技术指南》 ［３０］ 中蓄积量与生物量转

换参数，采用换算因子连续函数法［１８］，对同一样地按不同树种（组）换算并累加求和，得到样地单位面积乔木

层生物量；最后根据优势树种（组）碳含率［３０］计算各样地的乔木层单位面积碳储量。
Ｗ乔 ＝ ａＶ ＋ ｂ （１）
Ｃ ＝ Ｗ × ＣＦ （２）

式中， Ｗ乔为乔木层生物量（Ｍｇ ／ ｈｍ２），Ｖ 为每公顷蓄积量（ｍ３ ／ ｈｍ２），ａ 和 ｂ 为常数，主要优势树种（组）取值见

表 １；Ｃ 为各层碳储量（Ｍｇ Ｃ ／ ｈｍ２），Ｗ 为各层生物量（Ｍｇ ／ ｈｍ２），ＣＦ 为含碳率，无量纲，灌木层取 ０．４６７２，草本

层取 ０．３２７０，主要优势树种（组）取值见表 １。

表 １　 主要优势树种（组）对应生物量转换参数及含碳率取值

Ｔａｂｌｅ １　 Ｂｉｏｍａｓｓ ｃｏｎｖｅｒｓｉｏｎ ｐａｒａｍｅｔｅｒｓ ａｎｄ ｃａｒｂｏｎ ｆｒａｃｔｉｏｎ ｏｆ ｍａｉｎ ｄｏｍｉｎａｎｔ ｔｒｅｅ ｓｐｅｃｉｅｓ

树种（组）
Ｔｒｅｅ ｓｐｅｃｉｅｓ ｇｒｏｕｐ

ａ
／ （Ｍｇ ／ ｍ３）

ｂ
／ （Ｍｇ）

含碳率
Ｃａｒｂｏｎ ｆｒａｃｔｉｏｎ

杉木 Ｃｕｎｎｉｎｇｈａｍｉａ ｌａｎｃｅｏｌａｔａ ０．４６５２ １９．１４１０ ０．５１２７
马尾松 Ｐｉｎｕｓ ｍａｓｓｏｎｉａｎａ ０．５０３４ ２０．５４７０ ０．５２７１
桉树 Ｅｕｃａｌｙｐｔｕｓ ｒｏｂｕｓｔａ ０．８８７３ ４．５５３９ ０．４７４８
樟树 Ｃｉｎｎａｍｏｍｕｍ ｃａｍｐｈｏｒａ ０．９２９２ ６．４９４０ ０．４９１６
相思 Ａｃａｃｉａ ｃｏｎｆｕｓａ ０．９２９２ ６．４９４０ ０．４６６６
木荷 Ｓｃｈｉｍａ ｓｕｐｅｒｂａ ０．９２９２ ６．４９４０ ０．５１１５
栎类 Ｑｕｅｒｃｕｓ １．１４５３ ８．５４７３ ０．４７９８
其它松类 Ｏｔｈｅｒ ｐｉｎｅｓ ０．５２９２ ２５．０８７０ ０．４９６３
其它软阔类 Ｏｔｈｅｒ ｓｏｆｔ ｂｒｏａｄ⁃ｌｅａｖｅｄ ｔｒｅｅｓ ０．９２９２ ６．４９４０ ０．４５０２
其它硬阔类 Ｏｔｈｅｒ ｈａｒｄ ｂｒｏａｄ⁃ｌｅａｖｅｄ ｔｒｅｅｓ ０．９２９２ ６．４９４０ ０．４９０１
针阔混 Ｍｉｘｅｄ ｎｅｅｄｌｅ ０．８１３６ １８．４６６０ ０．４８９３
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　 　 采用范文义等［３１］建立的不同区域灌木草本生物量与高度之间的模型计算灌木草本的生物量，乘以盖度

得到样方灌草总生物量。
Ｗ灌 ＝ ０．０３９８ × ｈ１ － ０．３３２６ （３）
Ｗ草 ＝ ０．０１７５ × ｈ２ － ０．２８８８ （４）

式中， Ｗ灌为灌木层生物量（Ｍｇ ／ ｈｍ２）， Ｗ草为草本层生物量（Ｍｇ ／ ｈｍ２），ｈ１和 ｈ２分别表示灌木和草本的平均高

度（ｍ）。
为保证样地点与遥感影像像元的匹配，获取更准确的影像信息，分别对灌木层和草本层的 ５ 个样方总生

物量取均值后乘以样地面积比，得到样地灌草总生物量并转换成样地单位面积灌草生物量。 利用灌木、草本

层的平均碳含率［３０］换算得到各样地单位面积灌草总碳储量。 最后将乔木层、灌木层及草本层碳储量相加得

到样地单位面积总碳储量。
由于遥感影像成像时间和多数样地调查时间为 ２０１４ 年，为减少估测误差，依据树木生长方程将 ２０１６ 年

及 ２０１８ 年的样地的平均胸径和树高反推至 ２０１４ 年的生长状态，从而将所有样地植被碳储量换算至 ２０１４ 年

水平。
１．３．２　 遥感变量提取

植被指数由不同遥感光谱波段经线性或非线性组合构成，对植被具有一定指示意义，已被广泛用于定性

和定量评价植被生长状况［３２—３３］。 对预处理后的影像数据进行波段计算与提取，得到 ７ 个单波段反射率、
４２ 个两波段比值植被指数、１０５ 个三波段比值植被指数以及土壤调节植被指数、增强植被指数、归一化植被指

数、大气阻抗植被指数、修正归一化差值植被指数、红绿植被指数等常用的植被指数共 １６０ 个遥感变量，其具

体计算公式见表 ２。

表 ２　 所采用的遥感变量计算方法

Ｔａｂｌｅ ２　 Ｅｘｐｒｅｓｓｉｏｎｓ ｏｆ ｔｈｅ ａｄｏｐｔｅｄ ｒｅｍｏｔｅ ｓｅｎｓｉｎｇ ｖａｒｉａｂｌｅｓ

植被指数
Ｖｅｇｅｔａｔｉｏｎ ｉｎｄｅｘ

缩写
Ａｂｂｒｅｖｉａｔｉｏｎ

计算公式
Ｃａｌｃｕｌａｔｉｏｎ ｆｏｒｍｕｌａ

参考文献
Ｒｅｆｅｒｅｎｃｅ

土壤调节植被指数
Ｓｏｉｌ ａｄｊｕｓｔｅｄ ｖｅｇｅｔａｔｉｏｎ ｉｎｄｅｘ ＳＡＶＩ ＮＩＲ－Ｒｅｄ( ) １＋０．５( ) ／ ＮＩＲ＋Ｒｅｄ＋０．５( ) ［１３］

增强植被指数
Ｅｎｈａｎｃｅｄ ｖｅｇｅｔａｔｉｏｎ ｉｎｄｅｘ ＥＶＩ ２．５ ＮＩＲ－Ｒｅｄ( ) ／ ＮＩＲ＋６．０Ｒｅｄ－７．５Ｂｌｕｅ＋１( ) ［３３］

归一化植被指数
Ｎｏｒｍａｌｉｚｅｄ ｄｉｆｆｅｒｅｎｃｅ ｖｅｇｅｔａｔｉｏｎ ｉｎｄｅｘ ＮＤＶＩ ＮＩＲ－Ｒｅｄ( ) ／ ＮＩＲ＋Ｒｅｄ( ) ［３３］

大气阻抗植被指数
Ａｔｍｏｓｐｈｅｒｉｃａｌｌｙ ｒｅｓｉｓｔａｎｔ ｖｅｇｅｔａｔｉｏｎ ｉｎｄｅｘ ＡＲＶＩ ＮＩＲ－ Ｒｅｄ－Ｂｌｕｅ( )[ ] ／ ＮＩＲ＋ Ｒｅｄ－Ｂｌｕｅ( )[ ] ［３３］

修正归一化差值植被指数
Ｍｏｄｉｆｉｅｄ ｎｏｒｍａｌｉｚｅｄ ｄｉｆｆｅｒｅｎｃｅ ｖｅｇｅｔａｔｉｏｎ ｉｎｄｅｘ ＭＮＤＶＩ

ＮＩＲ－Ｒｅｄ
ＮＩＲ＋Ｒｅｄ １－

ＳＷＩＲ１－ＳＷＩＲ１ｍｉｎ

ＳＷＩＲ１ｍａｘ－ＳＷＩＲ１ｍｉｎ
( ) ［３３］

红绿植被指数
Ｒｅｄ⁃ｇｒｅｅｎ ｖｅｇｅｔａｔｉｏｎ ｉｎｄｅｘ ＲＧＶＩ Ｒｅｄ－Ｇｒｅｅｎ( ) ／ Ｒｅｄ＋Ｇｒｅｅｎ( ) ［３３］

两波段比值植被指数
Ｔｗｏ⁃ｂａｎｄ ｓｉｍｐｌｅ ｒａｔｉｏ ｖｅｇｅｔａｔｉｏｎ ｉｎｄｅｘ

ＳＲｉｊ Ｂａｎｄｉ ／ Ｂａｎｄ ｊ，（ ｉ，ｊ＝ １，２，．．．，７，ｉ≠ｊ） ［３３］

三波段比值植被指数
Ｔｈｒｅｅ⁃ｂａｎｄ ｓｉｍｐｌｅ ｒａｔｉｏ ｖｅｇｅｔａｔｉｏｎ ｉｎｄｅｘ

ＳＲｉｊｋ Ｂａｎｄｉ ／ Ｂａｎｄ ｊ＋Ｂａｎｄｋ( ) ，（ ｉ，ｊ，ｋ＝ １，２，．．．，７，ｉ≠ｊ≠ｋ，ｊ＜ｋ） ［３３］

单波段反射率
Ｂａｎｄ ｒｅｆｌｅｃｔａｎｃｅ

Ｂｉ Ｂａｎｄｉ， ｉ＝ １，２，…，７( ) ［３３］

１．３．３　 遥感变量筛选

计算所有遥感变量与样地植被碳储量之间的 Ｐｅａｒｓｏｎ 相关系数矩阵，选择与植被碳储量显著相关的变

量，采用逐步回归进行变量筛选。 同时，为了消除变量之间的共线性，引入方差膨胀因子（ ｖａｒｉａｎｃｅ ｉｎｆｌａｔｉｏｎ
ｆａｃｔｏｒ，ＶＩＦ） ［２８］进行共线性诊断，阈值设为 １０。 最终所得变量用于后续所有模型的构建。
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１．３．４　 ＧＷＲ 模型构建

ＧＷＲ 模型是对普通全局回归模型的扩展，它将数据的空间特性以距离加权的方式纳入模型中，其基本形

式为：

ｙｉ ＝ βｉ０ ＋ ∑ ｎ

ｋ ＝ １
βｉｋ ｕｉ，ｖｉ( ) ｘｉｋ ＋ εｉ 　 　 　 ｉ ＝ １，２，…ｎ （５）

式中， ｕｉ，ｖｉ( ) 为第 ｉ 个样本点的空间坐标； βｉ０ 为第 ｉ 个样本点的常数估计值； βｉｋ ｕｉ，ｖｉ( ) 为第 ｉ 个样本点第 ｋ
个自变量系数，与其空间位置有关； ｘｉｋ 为第 ｋ 个自变量在样本 ｉ 的值； εｉ 为残差，通常假定其服从独立正态分

布。 空间各点回归系数的求解如下：

β^ ｕｉ，ｖｉ( ) ＝ ＸＴＷ ｕｉ，ｖｉ( ) Ｘ( ) －１ＸＴＷ ｕｉ，ｖｉ( ) ｙ （６）

式中，Ｘ、ｙ 为各样本点的自变量与因变量矩阵； Ｗ ｕｉ，ｖｉ( ) 为样本点 ｉ 的空间权重矩阵：
Ｗ ｕｉ，ｖｉ( ) ＝ ｄｉａｇ Ｗｉ１，Ｗｉ２，…，Ｗｉｎ( ) （７）

对于空间权重核函数，研究利用 Ｒ 语言 ＧＷｍｏｄｅｌ 函数包，分别构建了 Ｇａｕｓｓｉａｎ［１９］、 Ｂｉ⁃ｓｑｕａｒｅ［２６］ 和

Ｅｘｐｏｎｅｎｔｉａｌ［３４］三种核函数。
校正 Ａｋａｉｋｅ 信息准则（Ａｋａｉｋｅ Ｉｎｆｏｒｍａｔｉｏｎ Ｃｒｉｔｅｒｉｏｎ ｃｏｒｒｅｃｔｅｄ，ＡＩＣｃ）和最大空间自相关距离（Ｍａｘｉｍｕｍ

Ｓｐａｔｉａｌ Ａｕｔｏｃｏｒｒｅｌａｔｉｏｎ Ｄｉｓｔａｎｃｅ，ＭＳＡＤ）是常用的两种带宽确定方式。 校正 Ａｋａｉｋｅ 信息准则通过选择 ＡＩＣｃ 值

最小时对应的带宽为最优带宽［２２］；最大空间自相关距离通过创建半变异函数获得［２８］。 交叉验证（Ｃｒｏｓｓ⁃
Ｖａｌｉｄａｔｉｏｎ，ＣＶ） ［３４］是目前主流的最优带宽求解方法之一，多用于气象学、海洋学等研究［３５—３６］，在植被碳储量

反演中运用较少，其表达式如下：

ＣＶ ｂ( ) ＝ １
ｎ ∑ ｎ

ｉ ＝ １
ｙｉ － ｙ^≠ｉ ｂ( )[ ]

２
（８）

式中， ｙ^≠ｉ ｂ( ) 表示带宽为 ｂ 时的模型预测值，其中 ≠ ｉ表示除 ｉ 以外的其它样本。 利用预测值进行计算，通过

交叉验证，获得使 ＣＶ（ｂ）最小的最优带宽 ｂ。
最终，将三种带宽选择方式与三种核函数进行组合，构建共 ９ 种 ＧＷＲ 模型进行植被碳储量反演和精度

评价。
１．３．５　 精度评价

采用留一交叉验证［３７］对模型结果进行精度验证，即每次只留 １ 个样本作为验证样本，余下的样本作为建

模样本，直到所有样本都做过验证样本，最后对验证结果取平均作为泛化误差的估计。 选用决定系数 Ｒ２

（ｃｏｅｆｆｉｃｉｅｎｔ ｏｆ ｄｅｔｅｒｍｉｎａｔｉｏｎ）、均方根误差（ｒｏｏｔ ｍｅａｎ ｓｑｕａｒｅ ｅｒｒｏｒ，ＲＭＳＥ）及平均绝对误差（ｍｅａｎ ａｂｓｏｌｕｔｅ ｅｒｒｏｒ，
ＭＡＥ）对模型进行精度评价［３７］。

采用 Ｍｏｒａｎ 指数（Ｍｏｒａｎ Ｉ）对不同模型预测值和实测值之间所得的残差进行空间自相关分析。 Ｍｏｒａｎ Ｉ＞０
表示空间正相关，值越大空间相关性越明显；Ｍｏｒａｎ Ｉ＜０ 表示空间负相关值，值越大空间差异越大；Ｍｏｒａｎ Ｉ 接
近 ０ 且在统计上不显著，则说明空间模式呈随机性。
１．３．６　 非平稳性检验

对 ＧＷＲ 模型参数估计值的空间非平稳性进行显著性检验，以判断这种非平稳性是空间数据本身固有，
还是由于随机因素干扰。 利用 Ｂｒｕｎｓｄｏｎ 等［１９］提出的置信区间检验法对 ＧＷＲ 模型各回归参数进行空间非平

稳性检验，将 ＧＷＲ 模型的局部参数与 ＭＬＲ 模型的全局参数进行对比，若 ＧＷＲ 模型参数估计的第 １ 分位和

第 ３ 分位值变化范围大于 ＭＬＲ 模型的二倍标准误值，则可认为各回归参数具有显著非平稳性。
１．３．７　 植被碳储量空间分布制图

以 Ｌａｎｄｓａｔ ８ ＯＬＩ 影像为数据源，选取最优 ＧＷＲ 模型进行碳储量反演得到碳储量空间分布，利用植被类

型空间分布数据对植被区域进行掩膜提取，得到深圳市植被碳储量空间分布图。
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２　 结果与分析

２．１　 遥感变量选择及带宽确定

　 　 遥感变量与植被碳储量之间的 Ｐｅａｒｓｏｎ 相关系数值在－０．３７８—０．３８３ 之间，共有 １１１ 个变量与碳储量显著

相关（Ｐ＜０．０５）。 其中，相关性最高的前 ３ 个变量是两波段比值植被指数 ＳＲ６４、三波段比值植被指数 ＳＲ４３６和三

波段比值植被指数 ＳＲ３２４，与碳储量的相关系数分别为 ０．３８３、－０．３７８ 和 ０．３７７。 从各遥感变量的波段组成来

看，单波段对碳储量的敏感度一般，但与红（Ｒｅｄ）和短波红外波段（ＳＷＩＲ１）组合而成的比值植被指数对碳储

量的敏感度相对较高。 在相关性分析基础上，引入方差膨胀因子 ＶＩＦ，采用逐步分析，最终筛选出三波段比值

植被指数 ＳＲ３２４、ＳＲ６５７及两波段比值植被指数 ＳＲ３５共计 ３ 个遥感变量（表 ３）。

表 ３　 变量筛选结果

Ｔａｂｌｅ ３　 Ｖａｒｉａｂｌｅ ｓｅｌｅｃｔｉｏｎ ｒｅｓｕｌｔｓ

变量
Ｖａｒｉａｂｌｅ

系数
Ｃｏｅｆｆｉｃｉｅｎｔ

标准误
Ｓｔａｎｄａｒｄ ｅｒｒｏｒ

膨胀因子
Ｖａｒｉａｎｃｅ ｉｎｆｌａｔｉｏｎ ｆａｃｔｏｒ

常数项 Ｃｏｎｓｔａｎｔ ２３７．６０２ ４０．７６１
三波段比值植被指数 ＳＲ３２４ －１８９．１９３ ２７．９４７ ４．１１７
两波段比值植被指数 ＳＲ３５ －２０１．５５６ ５１．１１０ ２．６９２
三波段比值植被指数 ＳＲ６５７ －３９．９０８ １２．７７６ ２．４７５

　 　 ＳＲ：比值植被指数 Ｓｉｍｐｌｅ ｒａｔｉｏ ｖｅｇｅｔａｔｉｏｎ ｉｎｄｅｘ

图 ２ 为分别利用 ＡＩＣｃ 与 ＣＶ 选择带宽，结合不同核函数构建 ＧＷＲ 模型时所得的带宽曲线图，图 ２ 中虚

线所对应带宽即为基于最小 ＡＩＣｃ 值或 ＣＶ 值的最优带宽。 最终，以 Ｇａｕｓｓｉａｎ、Ｂｉｓｑｕａｒｅ 和 Ｅｘｐｏｎｅｎｔｉａｌ 为核函数，
利用 ＡＩＣｃ 确定的最优带宽分别为 １１５３６、２８１３１ 和 １１７７０，利用 ＣＶ 确定的最优带宽分别为 ６３４７、１７０８１ 和 ４５１９。
通过创建半变异函数最终确定 ＭＳＡＤ 的最优带宽均为 ２８０００，基于不同带宽选择方法所得最优带宽相差较大。

图 ２　 ＡＩＣｃ 与 ＣＶ 带宽选择结果

Ｆｉｇ．２　 Ｂａｎｄｗｉｄｔｈ ｓｅｌｅｃｔｉｏｎ ｒｅｓｕｌｔｓ ｏｆ ｕｓｉｎｇ ＡＩＣｃ ａｎｄ ＣＶ

ＡＩＣｃ：校正 Ａｋａｉｋｅ 信息准则 Ａｋａｉｋｅ ｉｎｆｏｒｍａｔｉｏｎ ｃｒｉｔｅｒｉｏｎ ｃｏｒｒｅｃｔｅｄ；ＣＶ：交叉验证 Ｃｒｏｓｓ⁃ｖａｌｉｄａｔｉｏｎ

２．２　 碳储量预测模型精度评价

由表 ４ 可知，ＭＬＲ 模型的决定系数（Ｒ２）为 ０．２９８，均方根误差（ＲＭＳＥ）为 １５．８８６ Ｍｇ Ｃ ／ ｈｍ２，平均决定误差
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（ＭＡＥ）为 １１．７２１ Ｍｇ Ｃ ／ ｈｍ２，其模型残差的 Ｍｏｒａｎ Ｉ 为 ０．１７２（Ｐ＜０．０１），说明模型残差在空间中的分布并非完

全随机，且呈现显著正自相关。 考虑局部差异的 ＧＷＲ 预测效果均优于全局的 ＭＬＲ（Ｐ＜０．０５），但不同带宽选

择方法与不同核函数组合体现出不同的效果。 利用 ＡＩＣｃ 确定带宽，以不同核函数分别构建的 ３ 个 ＧＷＲ 模

型在精度上无显著差异，但以 Ｅｘｐｏｎｅｎｔｉａｌ 为核函数构建的 ＧＷＲ 模型残差存在显著正相关；利用 ＭＳＡＤ 确定

带宽时，以 Ｂｉ⁃ｓｑｕａｒｅ 为核函数所构建的 ＧＷＲ 模型效果最佳，且其模型残差呈随机分布；利用 ＣＶ 确定带宽构

建的 ＧＷＲ 模型预测效果普遍优于另两种带宽确定方法所构建的 ＧＷＲ 模型，所构建的 ３ 个 ＧＷＲ 模型，其
Ｍｏｒａｎ Ｉ 绝对值均小于 ０．０５（Ｐ＞０．１），模型残差均无显著自相关。 其中又以 ＣＶ 与 Ｅｘｐｏｎｅｎｔｉａｌ 核函数组合构建

的 ＧＷＲ 模型效果最佳，其 Ｒ２为 ０．６９７，ＲＭＳＥ 为 １０．４３７ Ｍｇ Ｃ ／ ｈｍ２，ＭＡＥ 为 ７．４０１ Ｍｇ Ｃ ／ ｈｍ２，残差 Ｍｏｒａｎ Ｉ 为－
０．０３６（Ｐ＞０．１），模型的预测结果更接近实测值，且模型残差之间相互独立。 整体来看，构建的 ＧＷＲ 模型估计

误差及残差自相关程度普遍低于 ＭＬＲ 模型。 这是由于样本地理位置信息以距离权重的方式参与了建模，使
得每个样地都具有一个独立的加权回归方程，这能在一定程度上提高预测精度并有效减弱残差的空间自相

关性。

表 ４　 模型估测精度及残差空间自相关

Ｔａｂｌｅ ４　 Ｅｓｔｉｍａｔｉｏｎ ａｃｃｕｒａｃｙ ａｎｄ ｒｅｓｉｄｕａｌ ｓｐａｔｉａｌ ａｕｔｏｃｏｒｒｅｌａｔｉｏｎ ｏｆ ｍｏｄｅｌｓ

模型
Ｍｏｄｅｌｓ

带宽选择
Ｂａｎｄｗｉｄｔｈ
ｓｅｌｅｃｔｉｏｎ

核函数
Ｋｅｒｎｅｌ Ｒ２

均方根误差
ＲＭＳＥ ／

（Ｍｇ Ｃ ／ ｈｍ２）

平均绝对误差
ＭＡＥ ／

（Ｍｇ Ｃ ／ ｈｍ２）

Ｍｏｒａｎ 指数
Ｍｏｒａｎ ｉｎｄｅｘ Ｐ Ｚ 得分

Ｚ ｓｃｏｒｅ

多元线性回归
ＭＬＲ ０．２９８ １５．８８６ １１．７２１ ０．１７２ ０．００１ ４．２９０

地理加权回归 ＡＩＣｃ Ｇａｕｓｓｉａｎ ０．４５１ １４．０５１ １０．２２８ ０．０５９ ０．０７１ １．５５０

ＧＷＲ Ｂｉｓｑｕａｒｅ ０．４４８ １４．０８４ １０．２７８ ０．０５５ ０．０８５ １．４５７

Ｅｘｐｏｎｅｎｔｉａｌ ０．４６２ １３．９０４ １０．０７２ ０．０７６ ０．０３８ １．９７４

ＭＳＡＤ Ｇａｕｓｓｉａｎ ０．３３９ １５．４１２ １１．２８１ ０．１４５ ０．００１ ３．６３７

Ｂｉｓｑｕａｒｅ ０．４４９ １４．０７３ １０．２７１ ０．０５５ ０．０８６ １．４４３

Ｅｘｐｏｎｅｎｔｉａｌ ０．３６３ １５．１３０ １１．０２６ ０．１３４ ０．００１ ３．３７１

ＣＶ Ｇａｕｓｓｉａｎ ０．５９１ １２．１１８ ８．７４９ －０．０２５ ０．３６４ －０．４２４

Ｂｉｓｑｕａｒｅ ０．５６３ １２．５３６ ９．０８７ －０．０１９ ０．４２１ －０．２９３

Ｅｘｐｏｎｅｎｔｉａｌ ０．６９７ １０．４３７ ７．４０１ －０．０３６ ０．２５１ －０．６８４

　 　 ＭＬＲ：多元线性回归 Ｍｕｌｔｉｐｌｅ ｌｉｎｅａｒ ｒｅｇｒｅｓｓｉｏｎ；ＧＷＲ：地理加权回归 Ｇｅｏｇｒａｐｈｉｃａｌｌｙ ｗｅｉｇｈｔｅｄ ｒｅｇｒｅｓｓｉｏｎ；ＡＩＣｃ：校正 Ａｋａｉｋｅ 信息准则 Ａｋａｉｋｅ

ｉｎｆｏｒｍａｔｉｏｎ ｃｒｉｔｅｒｉｏｎ ｃｏｒｒｅｃｔｅｄ；ＣＶ：交叉验证 Ｃｒｏｓｓ⁃ｖａｌｉｄａｔｉｏｎ；ＭＳＡＤ：最大空间自相关距离 Ｍａｘｉｍｕｍ ｓｐａｔｉａｌ ａｕｔｏｃｏｒｒｅｌａｔｉｏｎ ｄｉｓｔａｎｃｅ；ＲＭＳＥ：均方根误

差 Ｒｏｏｔ ｍｅａｎ ｓｑｕａｒｅ ｅｒｒｏｒ；ＭＡＥ：平均绝对误差 Ｍｅａｎ ａｂｓｏｌｕｔｅ ｅｒｒｏｒ

图 ３ 为碳储量实测值与所有模型预测值的拟合图，各模型均存在一定低值高估与高值低估现象。 对于碳

储量大于 ５０ Ｍｇ Ｃ ／ ｈｍ２的样地，各模型均存在明显的高值低估；对于碳储量低值则普遍存在高估现象，误差较

大。 此外，对于碳储量极低值，其模型估测结果存在少数预测值为负值。 对比不同模型拟合曲线与理想曲线

的偏离程度，ＭＬＲ 模型偏离程度远大于各 ＧＷＲ 模型的偏离程度；从回归拟合曲线两侧的散点分布情况来看，
相比于 ＭＬＲ 模型，ＧＷＲ 模型的散点更为紧凑地聚集于拟合曲线的两侧。 利用 ＡＩＣｃ 确定带宽构建的 ３ 个

ＧＷＲ 模型，实测值与预测值散点分布相似度较高，无显著性差异。 利用 ＭＳＡＤ 确定带宽、以 Ｇａｕｓｓｉａｎ 和

Ｅｘｐｏｎｅｎｔｉａｌ 为核函数构建的 ＧＷＲ 模型，虽 Ｒ２显著高于 ＭＬＲ 模型，但从拟合图来看，其预测结果并不存在明

显的差异。 利用 ＣＶ 确定带宽构建的 ＧＷＲ 模型，其曲线拟合及散点分布情况明显优于其它模型。 其中，又以

ＣＶ 与 Ｅｘｐｏｎｅｎｔｉａｌ 核函数组合构建的 ＧＷＲ 模型，其散点分布最为紧凑，预测结果与实测结果偏离程度最小。
２．３　 非平稳性检验

对所有 ＧＷＲ 模型进行回归参数的空间非平稳性检验，同一带宽选择方法所构建的 ＧＷＲ 模型，其参数非

平稳性具有相似性（图 ４）。 采用 ＡＩＣｃ 确定带宽构建的 ＧＷＲ 模型，常数项、变量 ＳＲ３５和变量 ＳＲ３２４的系数估计

值变化幅度均大于 ＭＬＲ 的二倍标准误值，变量 ＳＲ６５７虽存在一定的空间非平稳性，但并不显著；采用 ＭＳＡＤ 确

０４９４ 　 生　 态　 学　 报　 　 　 ４２ 卷　



ｈｔｔｐ： ／ ／ ｗｗｗ．ｅｃｏｌｏｇｉｃａ．ｃｎ

图 ３　 植被碳储量估测模型拟合结果

Ｆｉｇ．３　 Ｆｉｔｔｉｎｇ ｒｅｓｕｌｔｓ ｏｆ ｖｅｇｅｔａｔｉｏｎ ｃａｒｂｏｎ ｓｔｏｒａｇｅ ｅｓｔｉｍａｔｉｏｎ ｍｏｄｅｌｓ

ＭＬＲ：多元线性回归 Ｍｕｌｔｉｐｌｅ ｌｉｎｅａｒ ｒｅｇｒｅｓｓｉｏｎ；ＧＷＲ：地理加权回归 Ｇｅｏｇｒａｐｈｉｃａｌｌｙ ｗｅｉｇｈｔｅｄ ｒｅｇｒｅｓｓｉｏｎ； ＭＳＡＤ：最大空间自相关距离 Ｍａｘｉｍｕｍ

ｓｐａｔｉａｌ ａｕｔｏｃｏｒｒｅｌａｔｉｏｎ ｄｉｓｔａｎｃｅ

定带宽，以 Ｇａｕｓｓｉａｎ 和 Ｅｘｐｏｎｅｎｔｉａｌ 为核函数构建的 ＧＷＲ 模型，其变量均不具有显著非平稳性；采用 ＣＶ 选择

带宽所构建的 ＧＷＲ 模型，所有变量的系数估计第 １ 分位和第 ３ 分位值变化幅度均大于 ＭＬＲ 的二倍标准误

值，说明它们均具有显著的空间非平稳性，能较好反映空间异质性。
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图 ４　 空间非平稳性检验

Ｆｉｇ．４　 Ｓｔａｔｉｏｎａｒｙ ｔｅｓｔ ｏｆ ｒｅｌａｔｉｏｎｓｈｉｐ

ＳＲ：比值植被指数 Ｓｉｍｐｌｅ ｒａｔｉｏ ｖｅｇｅｔａｔｉｏｎ ｉｎｄｅｘ

图 ５ 为最优 ＧＷＲ 模型得到的回归参数空间分布。 变量回归系数的正负和数值在空间分布上的差异性，
反映了各变量在不同区域对碳储量表现出的不同影响。 常数项体现的主要是地理位置的影响，地理位置对大

部分地区碳储量呈现不同程度的正向影响，东南部低山地区碳储量受地理位置的影响相比其它地区较大。
ＳＲ３２４变量回归系数大部分为负值，系数绝对值高值主要集中在东南部及北部的碳储量高值区，这表明碳储量

高的地区，ＳＲ３２４变量回归系数相对较高，ＳＲ３２４变量对高碳储量地区的敏感度高于其它地区。 除中部及南部地

区外，ＳＲ３５变量大部分回归系数为负值，且回归系数由研究区中心区域向四周逐渐递减。 ＳＲ６５７回归系数均为

负值，能负向反映植被碳储量，在保持其它条件不变时，较高植被碳储量处具有较低的 ＳＲ６５７指数值。 中部及

南部的城市居民区的 ＳＲ６５７回归系数较大，表明 ＳＲ６５７变量更能反映低植被碳储量。
２．４　 植被碳储量空间分布

深圳市植被碳储量空间分布值在 １．６３—６０．９５ Ｍｇ Ｃ ／ ｈｍ２之间（图 ６）。 碳储量值小于 １０ Ｍｇ Ｃ ／ ｈｍ２的区域
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图 ５　 最优 ＧＷＲ 模型回归参数系数空间分布图

Ｆｉｇ．５　 Ｔｈｅ ｓｐａｔｉａｌ ｄｉｓｔｒｉｂｕｔｉｏｎ ｏｆ ｒｅｇｒｅｓｓｉｏｎ ｐａｒａｍｅｔｅｒ ｃｏｅｆｆｉｃｉｅｎｔｓ ｏｆ ｔｈｅ ｏｐｔｉｍａｌ ＧＷＲ ｍｏｄｅｌ

图 ６　 研究区植被碳储量空间分布图

　 Ｆｉｇ． ６ 　 Ｓｐａｔｉａｌ ｄｉｓｔｒｉｂｕｔｉｏｎ ｏｆ ｖｅｇｅｔａｔｉｏｎ ｃａｒｂｏｎ ｓｔｏｃｋｓ ｉｎ ｔｈｅ

ｓｔｕｄｙ ａｒｅａ

占深圳市植被区 ７．６１％，其分布较为零散，与深圳市草

地地类区域重合度较高。 在城市东南部低山、中西部丘

陵、中南部和北部地区，碳储量估计值大部分在 １０—３０
Ｍｇ Ｃ ／ ｈｍ２之间，该部分地区植被类型主要为森林。 碳

储量值大于 ３０ Ｍｇ Ｃ ／ ｈｍ２的区域面积约为 ２７６．７ ｋｍ２，占
深圳市植被区 ３０．４７％，分散分布于城市各地区，主要地

类为林地，且植被类型多为阔叶林。 从整体来看，反演

所得的碳储量空间分布与深圳市各植被类型空间分布

大体一致，与实际情况较符合。

３　 讨论

碳储量能反映植被固碳增汇功能，快速准确地估算

植被碳储量对评估区域碳汇价值具有重要意义。 本研

究以 Ｌａｎｄｓａｔ ８ ＯＬＩ 影像为数据源，构建了多个基于不同带宽选择方式及核函数的 ＧＷＲ 模型进行深圳市植被

碳储量估测研究。
结果表明 ＧＷＲ 模型预测效果优于 ＭＬＲ 模型，这与 Ｈｕ 等［２３］和 Ｋｕｐｆｅｒ 等［２６］的研究结果一致。 由于 ＭＬＲ

模型为全局模型，得到的回归参数估计是在整个研究区的平均值，反映碳储量空间异质特征的能力有限；而
ＧＷＲ 模型为局部模型，它考虑了变量的空间异质性，将全局参数估计分解为局部参数进行估计，在估测精度

与保留样本空间特征上都显著优于 ＭＬＲ，且能有效降低模型残差的空间自相关性［２２，２４］。 Ｊｉａｎｇ 等［３］利用改进

ＧＷＲ 模型估算深圳市植被碳空间分布，获得了最小 ＲＭＳＥ 值 １３．２８０ Ｍｇ Ｃ ／ ｈｍ２。 本研究中通过对带宽选择方
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式和不同核函数进行优选得到最优 ＧＷＲ 模型 ＲＭＳＥ 为 １０．４３７ Ｍｇ Ｃ ／ ｈｍ２，表明估测效果有明显改善。 但从

建模结果来看，不同的带宽选择方式结合不同核函数所构建的 ＧＷＲ 模型预测效果有显著差异。 在实际操作

中需结合具体情况综合考虑，针对不同研究区和数据，选择合适的权重函数确定最优带宽，以保证 ＧＷＲ 模型

的估测效果［３８］。
由于样地调查时间跨度较大，为尽可能降低因时间差异带来的影响，依据树木生长方程将不同年度样地

植被碳储量反推换算至同一水平，但难以避免造成碳储量样地调查数据与实际情况的偏差，从而影响碳储量

估测。 在构建碳储量估测模型时，各模型均存在少数预测值为负值，类似的问题在 Ｓｕｎ 等［１３］ 的研究中也存

在，其主要原因是植被碳储量与选定光谱变量之间的非线性关系。 作为一种线性方法，ＧＷＲ 模型使用局部最

小二乘得到局部参数估计值，虽在探索空间异质性方面具有优势，但对于非线性关系解释能力有限。 罗小波

等［３９］提出一种局部非线性地理加权回归模型，并将其应用于地表温度研究，获得了比 ＧＷＲ 线性模型更优的

结果。 可以考虑引入局部非线性地理加权回归模型用于植被碳储量等参数的反演研究。
植被碳储量空间分布图所得碳储量值在 １．６３—６０．９５ Ｍｇ Ｃ ／ ｈｍ２之间，这与 Ｓｕｎ 等［１３］ 所得的深圳市森林

碳储量数值范围相似。 但反演制图所得碳储量最大值与样地碳储量最大观测值 ９１．２４７ Ｍｇ Ｃ ／ ｈｍ２相差较大，
这很大程度上与样本数据的分布有关。 在使用 ＧＷＲ 作为样本外空间预测工具时，是基于先前估计的带宽从

未观测位置周围借来已知样本数据，获得样本外预测。 因 ９０％以上样本数据植被碳储量值位于 ０—６０ Ｍｇ Ｃ ／
ｈｍ２之间，对样本外预测结果造成了影响，使数值集中于此区间。 可结合以往的碳储量调查数据综合考虑，使
所布设样地尽可能包含多个地类多个级别碳储量值分布。

ＧＷＲ 模型的特点在于局部参数的估计，局部参数的非平稳性能体现模型反映空间异质性的能力［２６，３８］。
通过 ＣＶ 选择带宽构建的 ＧＷＲ 模型效果相对较好，其变量回归参数存在显著空间非平稳性。 但通过 ＡＩＣｃ 及

ＭＳＡＤ 选择带宽构建的 ＧＷＲ 模型，均存在回归参数空间非平稳性不显著的变量，需将其作为常参数考虑。 这

种既包含变参数又包含常参数的 ＧＷＲ 扩展模型，通常称为混合 ＧＷＲ 模型［２０—２１］。 混合 ＧＷＲ 可提高常参数

估计的精度和稳定性，从而降低因常参数估计值而造成的模型预测误差，具有获得高精度、稳定的植被碳储量

估测结果的潜力。

４　 结论

本研究以 Ｌａｎｄｓａｔ ８ ＯＬＩ 影像为数据源，结合植被碳储量样地实测数据，构建了ＭＬＲ 模型和多个基于不同

带宽选择方式及核函数的 ＧＷＲ 模型，对深圳市植被碳储量进行估测和空间分布制图。 得出以下主要结论：
（１）局部的 ＧＷＲ 模型优于全局的 ＭＬＲ 模型，不同的带宽选择方式结合不同核函数所构建的 ＧＷＲ 模型，

在模型拟合效果上具有较大差别。 以 ＣＶ 确定带宽、Ｅｘｐｏｎｅｎｔｉａｌ 为核函数组合构建的 ＧＷＲ 模型效果最佳，其
Ｒ２为 ０．６９７，ＲＭＳＥ 为 １０．４３７ Ｍｇ Ｃ ／ ｈｍ２，相比其他 ＧＷＲ 模型 ＲＭＳＥ 下降了 １３．８７％—３２．２８％，估测效果有明显

改善。
（２）同一带宽选择方法所构建的 ＧＷＲ 模型，其参数非平稳性具有相似性。 通过 ＣＶ 选择带宽构建的

ＧＷＲ 模型，其变量回归参数均存在显著空间非平稳性，能较好反映空间异质性。
（３）由最优 ＧＷＲ 模型获得的深圳市植被碳储量空间分布表明植被碳储量高值和低值主要分布于森林和

草地区域，与深圳市植被覆盖情况基本一致，能为深圳市植被碳储量遥感估算提供方法与技术参考。
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