DOI: 10.5846/stxb201708111449

姜之点,彭立华,杨小山,姚灵烨,朱春磊.街区尺度屋顶绿化热效应及其与城市形态结构之间的关系.生态学报,2018,38(19): - . Jiang Z D, Peng L H, Yang X S, Yao L Y, Zhu C L. Thermal effects of block-scale roof greening and their relationships with urban geometry. Acta Ecologica Sinica, 2018, 38(19): - .

街区尺度屋顶绿化热效应及其与城市形态结构之间的 关系

姜之点^{1,2},彭立华^{1,2,*},杨小山^{1,2},姚灵烨^{1,2},朱春磊^{1,2}

1 南京工业大学建筑学院,南京 2118162 南京工业大学绿色建筑与生态城市实验室,南京 211816

摘要:众多研究表明,单个绿化屋顶能够降低建筑表面温度、削减建筑能耗、缓解热岛效应,但鲜有研究探讨大面积屋顶绿化如 何改善城市冠层内部三维空间的热环境,改善效果与城市形态结构之间存在什么关系。基于三维小气候模型 ENVI-met 4.2,开 展街区尺度屋顶绿化热效应研究。在南京市选择具有不同形态结构特征的 8 个典型样区,每个样区设置 2 种朝向(街道与主导 风向平行或相交)、3 种屋顶绿化情景(传统光屋顶、简易型绿化、复合型绿化),共对 48 种情景进行了微气候模拟与分析。结果 表明,街区尺度屋顶绿化产生的"冷岛"可从屋面扩散到地面空间,缓解城市冠层热岛效应。白天 14:00 时,8 个样区屋顶 1.5 m 高处的降温强度最高可达 0.64℃,样区平均降温强度最大值为 0.44℃;地面 1.5 m 高处的降温最大值为 0.55℃,样区平均降温 强度最大值为 0.25℃。建筑高度、高宽比、容积率与屋面、地面降温强度之间均存在显著负相关关系;建筑密度与屋面降温强度 显著正相关,但与地面降温强度之间无显著相关性。总的来说,紧凑低层建筑区和开敞低层建筑区实施屋顶绿化后产生的降温 效应明显高于紧凑和开敞高层建筑区;建筑高度和密度相同时,街道走向与主导风向呈 45°夹角比与主导风向平行具有更高的 降温强度。研究结果能够促进对亚热带城市地区建筑-植被-大气相互关系的深入认识,并为屋顶绿化实践提供指导。 关键词;屋顶绿化;热效应;城市形态结构;局地气候区

Thermal effects of block-scale roof greening and their relationships with urban geometry

JIANG Zhidian^{1, 2}, PENG Lihua^{1, 2, *}, YANG Xiaoshan^{1, 2}, YAO Lingye^{1, 2}, ZHU Chunlei^{1, 2} 1 School of Architecture, Nanjing Tech University, Nanjing 211816, China 2 Laboratory of Green Building and Eco-city, Nanjing Tech University, Nanjing 211816, China

Abstract: Many studies reported that green roofs can notably alleviate roof-level surface and air temperatures, cutting building cooling loads and energy consumption. However, few studies have explored how large-scale roof greening affects the three-dimensional thermal environment of the urban canopy layer and how green-roof thermal performance correlates with urban geometry. This research investigated the block-scale green-roof thermal performance and its relationships with urban geometry factors by applying the three-dimensional microclimate model ENVI-met 4.2 in Nanjing City. Eight study plots with distinguished urban forms in conjunction with two orientations and three roof greening options generated a total of 48 scenarios for ENVI-met modeling and analysis. Results suggested that block-scale roof greening not only cooled the roof-level ambient atmosphere, but could ameliorate the ground-level microclimate. At 14:00 during the day, the air temperature reduction at 1.5 m height above the roof surface could reach 0.64 °C with an average reduction of 0.44 °C. The maximum

基金项目:国家自然科学青年基金项目(41401179,51408303);江苏省自然科学基金项目(BK20140941,BK20161547)

收稿日期:2017-08-11; 网络出版日期:2018-00-00

^{*} 通讯作者 Corresponding author.E-mail: plhblue@ njtech. edu. cn

and average air temperature reductions at 1.5 m height above the ground were 0.55 $^{\circ}$ C and 0.25 $^{\circ}$ C, respectively. Building height, height-to-width ratio, and floor area ratio had significant negative correlations with both the roof and ground level thermal effects. Building density was positively related with roof-level thermal effects, but had no significant correlation with ground-level thermal effects. Overall, compact low-rise and open low-rise building areas exhibited much higher cooling effects than compact and open high-rise building areas. Study sites with S-N orientation had better thermal performance than SW-NE orientated sites. These findings can deepen our understanding of building-vegetation-climate interactions in urban areas and provide a reference for roof greening practice in humid subtropical cities.

Key Words: green roof; thermal effects; urban geometry; local climate zone

城市化与全球气候变化双重作用下,热岛效应成为最具代表性的生态环境问题之一^[1-2]。城市绿地通过 冠层遮阴与蒸发蒸腾作用形成"冷岛",是缓解热岛效应、提升人居环境质量的有效途径^[3-8]。当前我国城市 发展从增量扩张往存量优化模式转变,城市建设用地日益稀缺,可绿化面积越来越少。绿化屋顶能充分利用 屋面闲置空间添绿,可有效补充地面绿化不足,帮助城市缓解热岛效应。

屋顶绿化热效应主要通过遮阴隔离及蒸发蒸腾两种途径实现。由植物、土壤基质等组成的多层结构可有效隔离太阳辐射,降低屋顶表面温度,削减传入建筑内部的热量及空调制冷耗能;此外,植被及土壤中水分的蒸发蒸腾作用带走热量,从而降低大气温度、缓解城市热岛效应。目前屋顶绿化热效应研究方法及内容主要包括4个方面:(1)通过短期对比观测实验,分析温湿度、建筑能耗等热效应指标在绿化及普通屋顶之间的差异,揭示屋顶绿化热效应强度^[9-15];(2)基于长时间序列观测数据,定量分析气候、植被、土壤等环境因子对热效应的影响^[16-17];(3)建立热量平衡方程定量刻画建筑-屋顶绿化-大气之间的热量传输过程,揭示热效应影响因子及作用机理^[18-21];(4)借助建筑能耗模型或者中尺度气候模型,预测单个或者大面积屋顶绿化对城市能源消耗以及热岛效应的削减作用^[22-25]。

以上实测及模型研究均证实屋顶绿化可在不同气候条件下发挥降温、节能热效应,从而改善城市热环境。 然而,大部分研究着重探讨单个屋顶绿化案例对建筑屋顶层面热效应指标的影响,无法全面反映城市冠层三 维空间热环境的响应情况。城市尺度的模拟研究往往对下垫面特征进行参数化处理,不能充分考虑由于建筑 环境差异导致的热效应空间分异,无法深入探讨城市形态结构对热效应的可能影响。屋顶绿化的降温效应从 屋面至地面呈现怎样的三维空间分布规律?城市形态结构因子(建筑高度、密度、朝向)如何影响热效应空间 分布?具有哪种形态特征的城市区域建设屋顶绿化能最大程度发挥热效应?要回答这些问题,必须开展介于 建筑与城市之间的街区尺度屋顶绿化热效应研究。

在南京市选择不同形态结构特征的代表性样区,采用小气候模型 ENVI-met 4.2,模拟分析街区尺度屋顶 绿化的三维热效应,并着重探讨城市形态结构对热效应的影响,识别有利于缓解热岛效应的形态结构类型, 研究结果可促进对亚热带城市地区建筑-植被-大气相互关系及作用机理的深入认识,并为屋顶绿化实践提供 指导。

1 研究区概况

1.1 南京市气候特征

南京位于 31.2—32.3°E,118.4—119.2°N,属亚热带湿润季风气候,四季分明,冬冷夏热,全年日平均气温 28.6℃,夏季日均气温 32.0℃,盛行风向为东风和东南风。南京是长三角地区的中心城市,常住人口 824 万,城区人口密度大,高层建筑较多,热岛效应明显,根据 40 年气象站观测资料分析显示,南京市平均热岛强度为 0.5℃,最高可达 6.0℃^[26]。

1.2 研究样区选择

参考局地气候分区体系(Local Climate Zone,LCZ)选择样区^[27]。LCZ 是目前发展较为成熟的以城市气候

学为基础的分类体系,它主要依据下垫面对热环境的响应能力进行分区划定^[28-30],将城市一定范围的区域(直径约1km),根据其建筑高度、建筑密度、透水面积比、天空视域系数以及高宽比等因子划分为10类局地 气候区,依次排序为LCZ1—LCZ10。本研究考虑屋顶绿化适建性等因素,不分析LCZ7(轻质低层建筑区)和 LCZ10(工业厂房区)两种类型;此外,容积率与绿化覆盖率为我国控制性详细规划的重要指标,因此也一并考虑(表1)。

LCZ 表型 特征 再区工具影像语 指依名称 样区者标准 LCZ 防止者称性 LCZ 防止者称性 Jacz Jacz LCZI 需集混合分布的高层 常集混合分布的高层 第年混合分布的高层 Jacz Jacz </th <th>Table 1 Sp</th> <th>atial and design characteristic</th> <th>s and criteria of the 8 loca</th> <th>l climate zones and</th> <th>associated study sites</th> <th>for simulation</th>	Table 1 Sp	atial and design characteristic	s and criteria of the 8 loca	l climate zones and	associated study sites	for simulation
LCZ Type Characteristics mages of study sites Indicators Site value Studaed value LCZ 常永高見建築以区 Compart heigh-sites LCZ Rober Legg KX Open hich-sites Open hich-sites Open hich-sites Open hich-sites Open hich-sites mages of study sites BH/m BL/m FX flate, U.N. dot site flate, U.N. dot site fl	LCZ 类型	特征	样区卫星影像图	指标名称	样区指标值	LCZ 分类标准
LCZI 要求用合分合的商层 建筑(10 层以上); 几 f X f t t t t d t d t d t d t d t d t d t d	LCZ Type	Characteristics	Images of study sites	Indicators	Site value	Standard value
$ \begin{array}{c} {\rm ICZ1} \\ {\rm gray graph de prime draw in the set of the s$				BH/m	32.2	>25
************************************	LCZ1			BD/%	33.6ª	40-60
$ \begin{array}{c} Compact high-rise \\ FAR (10, Eg. L), 1, 4 \\ m \ b \pm \\ m \ $	紧凑高层建筑区	密集混合分布的高层		PSF/%	18.1ª	<10
$J'L fl # , l \Lambda > \dot{\Delta} > \dot{\Delta} + \dot{\Delta} $ $B h \dot{\Delta}$ $J'V = I_1 P_0$ $C C L / S = I_2 P_1$ $C C L / S = I_2 P_2$ $S \dot{\Delta} + \dot{\Delta} = I_2 P_1 P_2$ $A t t \dot{\alpha} , l \Lambda > \dot{\Delta} + \dot{\alpha} = I_2$ $J'V = I_1 P_0$ $B H / m = I S = I_1$ $B H / m = I S = I_2$ $J' = I_2$ $B H / m = I S = I_2$ S V = 0.54 $J = -0.55V = 0.54$ LCZ3 S $\dot{\chi} \in K B L \dot{\alpha} \wedge \dot{\alpha} = I_2$ $\dot{\Lambda} + \dot{\alpha} = I_2$ $S V = 0.54$ V = 0.54 $J = 0.56V = 0.52$ $J = 0.56V = 0.52$ LCZ3 S $\dot{\chi} \in K B L \dot{\alpha} \wedge \dot{\alpha} = I_2$ $\dot{\Lambda} + \dot{\alpha} = I_2$ $S V = 0.52$ V = 0.52 $J = 0.56V = 0.52$ $J = 0.56V = 0.52$ $J = 0.56V = 0.52$ LCZ4 F & K = 0.52 V = 0.59 $A t t \dot{\alpha} , l \lambda = A \dot{\alpha} + A $	Compact high-rise	建筑(10 层以上);儿		SVF	0.49^{a}	0.2-0.4
$ \begin{array}{c} \begin{tabular}{ c c c c c c } \hline FAR & 3.29 & - & & & & & & & & & & & & & & & & & $	يرز الدارية.	乎 <u>大</u> 植被,以不透水地		H/W	1.78ª	>2
LCZ Sex Rade $0 + 6$ non p_{E} ($2 + 0 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + $		面为王		FAR	3 29	
$ \begin{array}{c} LCZ \\ \mathbb{K} \& \mbox{\mathbb{R}} \ 2 $\mathbb{$			Mana and property and	GCR/%	18.8	_
LCZ2 $\aleph \pm \Re \pm 2 \circ \gamma = 6 \ holds = R \\ \pm \omega (3 \rightarrow 0 \\ R) ; 1, 4^{2} \\ \pm \chi \pm \omega = 7 \\ \pm \chi \pm 2 \\ \pm $				BH/m	18.1	10-25
Sky He By King (3 $\rightarrow 0$ B) 1, P High (3 $\rightarrow 0$ B) 1, P SVF 0.54 0.3 $\rightarrow 0.6$ SVF 0.54 0.3 $\rightarrow 0.6$ H/W 0.95 0.75 $\rightarrow 2$ Sy E FAR 2.03 Genpact nuc-rise FAR 2.03 CIZ3 St E St E BH/m 6.8 3 $\rightarrow 10$ BH/m 6.8 3 $\rightarrow 10$ BH/m 6.8 3 $\rightarrow 10$ Compact now-rise Fat Bit, UA T-56 x 4m m $h W$ 0.52 0.2 $\rightarrow 0.6$ H/W 0.51 0.75 $\rightarrow 1.5$ FAR 1.13 Generat low-rise Fat Bit/m 1.81 - H/W 0.86 0.75 $\rightarrow 1.5$ Bit/m 2.86 20 $\rightarrow 0$ popen high-rise Trady fation falge \$\pm m\$ FAR 1.13 GCRV/% 30.9 0.59 0.5 $\rightarrow 0.7$ 1.07 0.75 $\rightarrow 1.25$ PSK/% 30.9 0.59 0.5 $\rightarrow 0.7$ 1.075 $\rightarrow 1.25$ 1.075 1.075 $\rightarrow 1.25$ FAR fast place \$\pm m\$ FAR 1.13 - <	LCZ2			BD/%	35 5ª	40-70
Compact indivise $\frac{1}{2\chi_0}$ (3 - 9 E); 1.9 SVF 0.54 0.3-0.6 h^{\pm} h^{\pm} h^{\pm} h^{\pm} h^{\pm} h^{\pm} h^{\pm} $0.3-0.6$ h^{\pm} h^{\pm} h^{\pm} h^{\pm} h^{\pm} $0.3-0.6$ h^{\pm} h^{\pm} h^{\pm} h^{\pm} $0.3-0.6$ h^{\pm} h^{\pm} h^{\pm} h^{\pm} $0.3-0.6$ h^{\pm} h^{\pm} h^{\pm} h^{\pm} h^{\pm} h^{\pm} $LZ3$ π^{\pm} h^{\pm}	紧凑中层建筑区	密集混合分布的中层		PSF/%	12.3	<20
λ the χ_1 λ_2 λ_2 λ_2 λ_3 $ \lambda$ the χ_1 λ_2 λ_3 λ_3 $ \lambda$ the χ_2 χ_3 χ_3 $ (CCR/\%, 12.7)$ $ BH/m$ 6.8 $3-10$ $BD/\%$ 46.2 $40-70$ χ_2 χ_3 $\chi_1 - 3$ E_2 , $\chi_1 - 2$ $GCRC/\%$ 12.7 $ M$ $GCRC/\%$ 10.7 6.8 $3-10$ M M 0.8 $0.75-2$ 0.2 $0.2-0.6$ M M 0.8 $0.75-1.5$ $0.75-1.5$ $0.75-1.5$ M 0.13 $ CCR/\%$ 12.0 $ M$ M 0.8 $0.75-1.5$ $0.75-1.5$ M 1.13 $ CCR/\%$ 12.0 $ M$ M 0.16 $0.5-0.7$ $0.75-1.5$ M M 14.7 $0-75-1.5$ $0.75-1.5$ M M 14.7 $0-75-1.5$ $0.75-1.5$ $0.75-1.5$ M M 14.7 $075-2$ $0.75-1.5$ $0.75-$	Compact mid-rise	建筑(3—9 层);几乎		SVF	0.54	0.3-0.6
3π 5π FAR 2.03 $ GCR/\%$ 12.7 $ GCR/\%$ 12.7 $ GCR/\%$ 12.7 $ GCR/\%$ 12.7 $ GCR/\%$ 11.9 <30 $Gompact low-rise$ 2π 2π 0.52 $0.2-0.6$ H/W 0.86 $0.75-1.5$ 0.52 $0.2-0.6$ H/W 0.86 $0.75-1.5$ $0.75-1.5$ 0.76 FAR 1.13 $ 0.26/\%$ 0.20 $ H/W$ 0.86 $0.75-1.5$ $0.75-0.15$ $0.75-0.15$ $0.75-0.12$ $GCR/\%$ 0.26 $0.0-40$ 0.52 $0.0-40$ 0.52 $0.2-40$ $PSF/\%$ 0.99 $0.5-0.7$ 0.52 $0.5-0.7$ 0.52 $0.5-0.7$ 0.52 $0.5-0.7$ 0.52 $0.5-0.7$ 0.52 $0.5-0.7$ 0.52 $0.5-0.7$ 0.52 $0.5-0.7$ 0.52 $0.5-0.7$ 0.52 $0.5-0.7$ 0.52 0.5 $0.5-0.7$ 0.52 <td>24172</td> <td>无植被,以不透水地面</td> <td></td> <td>H/W</td> <td>0.95</td> <td>0.75-2</td>	24172	 无植被,以不透水地面		H/W	0.95	0.75-2
LCZ3 BK \pm \mathbb{R}	to to the	为王		FAR	2.03	_
				GCR/%	12.7	
LCZ3 $8 \pm R_{12} = 0.5 \text{ m} + $				BH/m	6.8	3—10
LZ5 密集混合分布的低层建筑 建筑 $(1-3 R)$; $0.F$ μ μ μ μ μ λ λ Compact low-rise 无植放, μ λ μ λ λ λ LZ4 μ μ λ λ λ $-$ LZ4 π μ λ λ $ \mu$ λ μ λ $ \mu$ λ λ $ \mu$ λ λ $ \mu$ λ λ $ \mu$ λ λ $ \mu$ λ λ $ \mu$ λ $ \mu$ λ $ -$ <td>1073</td> <td></td> <td></td> <td>BD/%</td> <td>46.2</td> <td>40-70</td>	1073			BD/%	46.2	40-70
Abe in the set of the s	BCZ5 竖法任己建筑区	密集混合分布的低层		PSF/%	11.9	< 30
Campar nowise $\chi tade , t dx - 3 x h h a m h t dx h h dx h h a m h t dx h h a m h t dx h h dx h h$	系接限法建筑区 Compact low-rise	建筑(1—3 层);几乎		SVF	0.52	0 2-0 6
$j \pm$ $j \pm$ $i = 1$	Compact low-lise	无植被,以不透水地面		H/W	0.86	0.75-1.5
LCZ4 $T \hat{R} \hat{\alpha} \hat{\beta} \hat{\beta} \hat{z} \hat{z} \hat{y} \hat{N}$ Open high-rise $T \hat{W} \hat{\alpha} \hat{\beta} \hat{\beta} \hat{z} \hat{z} \hat{y} \hat{N}$ $(10 E L E); th the take take take take take take take tak$		为主		FAR	1 13	
LZ4 开敞商层建筑区 Open high-rise 开敞分布的商层建筑 (10 层以上);植被覆 盖率较高,以透水地面 为主 JUST 10 JUST 1				GCB/%	12.0	_
LCZ4 $T \hat{\mathbb{R}} \hat{\mathbb{A}} \hat{\mathbb{A}} \hat{\mathbb{B}} \hat{\mathbb{A}} \hat{\mathbb{A}}$					20.0	× 25
$\pi \& h h h h h h h h h h h h h h h h h h $	LCZ4	开敞分布的高层建筑 (10 层以上);植被覆 盖率较高,以透水地面 为主			20.0	>25
Open high-rise (10 E U E); ta ta ta ta ta $b \pm x$	开敞高层建筑区		TOTAL TREAM	DD/ 70 PSF/06	30.9	20—40 30—40
立 盖率较高,以透水地面 为主 Drive 0.12 0.75 - 0.12 j 力主 レW 1.21 0.75 - 0.12 KW 1.21 0.75 - 0.12 0.75 - 0.12 FAR 2.67 - GCR/% 32.6 - BH/m 14.7 10-25 BD/% 29.2 20-40 PSF/% 32.3 20-40 Open mid-rise 率较高, 以透水地面 为主 NF 0.63 0.5 - 0.8 VW 0.72 0.3-0.75 0.5 - 0.8 FAR 1.68 - GCR/% 33.2 - BH/m 12.1* 3-10 LCZ6 F敵分布的低层建筑 BH/m 12.1* FAR 1.68 - GCR/% 33.2 - BH/m 12.1* 3-10 LCZ6 F敵分布的低层建筑 SVF 0.67 FAR 1.68 - GCR/% 35.3 30-60 Open low-rise (1-3 房); 植被覆蓋 NT NT VF 0.67 0.6-0.9 WW 0.71 0.3-0.75 FAR 1.24 - GCR/% 35.8 - BH/m 9.0 3-10 <td>Open high-rise</td> <td rowspan="4">被覆地面</td> <td>SVF</td> <td>0.59</td> <td>0.5-0.7</td>	Open high-rise		被覆地面	SVF	0.59	0.5-0.7
为主 市水 1.12 6.19 1.12 LCZ5 开敞分布的中层建筑 (3—9 层); 植被覆盖 率较高, 以透水地面 为主 开敞分布的中层建筑 (3—9 层); 植被覆盖 率较高, 以透水地面 为主 Image: Second Seco				H/W	1 21	0.75-1.25
LCZ5 $T \ \ensuremath{\mathbb{R}}^0 \ for home B g \equiv fith for home B g \equ$				FAR	2.67	
LCZ5 开敞中层建筑区 Open mid-rise 开敞分布的中层建筑 (3—9 层); 植被覆盖 率较高, 以透水地面 为主 Image: Figure 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,				GCR/%	32.6	
LCZ5 $\# w \beta \pi h h p E g \pm g_1$ $\# w \beta \pi h h p E g \pm g_1$ $BD/\%$ 29.2 $20-40$ Open mid-rise $\# k g = g_1$, $i d k g \equiv g \pm g k g = h h h h h h h h h h h h h h h h h h$					14.7	10 25
Hb/分布的中层建筑 开敞分布的中层建筑 29.2 20-40 Open mid-rise 率较高,以透水地面 为主 PSF/% 32.3 20-40 V 9.5 % 0.3 0.5-0.8 YW 0.72 0.3-0.75 FAR 1.68 - GCR/% 33.2 - BH/m 12.1 ^a 3-10 BD/% 30.2 20-40 YW 0.72 0.3-0.75 FAR 1.68 - GCR/% 33.2 - BH/m 12.1 ^a 3-10 BD/% 30.2 20-40 YW 0.71 0.3-0.75 FAR 1.68 - GCR/% 35.3 30-60 YW 0.71 0.3-0.75 H/W 0.71 0.3-0.75 FAR 1.24 - GCR/% 35.8 - H/W 0.71 0.3-0.75 FAR 1.24 - GCR/% 35.8 - BH/m 9.0 3-10 BD/% 45.7 30-50 YZ YW 0.7 20 HYW 0.33 0.7 HYW 0.33 0.7	1075			DП/ M PD/0/	14.7	10-23
$(3-9 \ E)$; $i d a g a a s s s s s s s s s s s s s s s s$	LUZ5 开韵由尼建箝区	开敞分布的中层建筑		DD/ %	29.2	20-40
Performation 率较高,以透水地面 为主 Performation Difference Diffe	Open mid-rise	(3—9 层); 植被覆盖 率较高, 以透水地面		SVF	0.63	20-40
为主 市水 6.72 6.5 0.75 FAR 1.68 - GCR/% 33.2 - BH/m 12.1 ^a 3-10 BD/% 30.2 20-40 PSF/% 35.3 30-60 Open low-rise (1-3 层); 植被覆盖 SVF 0.67 0.6-0.9 H/W 0.71 0.3-0.75 FAR 1.24 - GCR/% 35.8 - GCR/% 35.8 - LCZ8 分布较为密集的低层 大型建筑(1-3 层); BD/% 45.7 30-50 LCZ8 大型建筑(1-3 层); LP手L植被,以不透水 BD/% 45.7 30-50 PSF/% 5.2 <20				JVI H/W	0.03	0.3-0.75
LCZ6 开敞分布的低层建筑 PBL/% 一 T敞低层建筑区 开敞分布的低层建筑 PSF/% 33.2 - BH/m 12.1ª 3-10 BD/% 30.2 20-40 PSF/% 35.3 30-60 SVF 0.67 0.6-0.9 H/W 0.71 0.3-0.75 FAR 1.24 - GCR/% 35.8 - BH/m 9.0 3-10 LCZ8 分布较为密集的低层 大型在気(1-3 层); L平无植被,以不透水 BD/% 45.7 30-50 PSF/% 5.2 <20	N 2 N N	为主		FAR	1.68	0.5 0.75
LCZ6 开敞分布的低层建筑 (1-3 层);植被覆盖 BH/m 12.1ª 3-10 BD/% 30.2 20-40 PSF/% 35.3 30-60 Open low-rise (1-3 层); 植被覆盖 SVF 0.67 0.6-0.9 H/W 0.71 0.3-0.75 FAR 1.24 - CCR/% 35.8 - BH/m 9.0 3-10 LCZ8 分布较为密集的低层 大型建筑(1-3 层); L平无植被,UA不透水 BD/% 45.7 30-50 PSF/% 5.2 <20	Man to Man and			CCR/%	33.2	_
LCZ6 开敞分布的低层建筑 一方 做分布的低层建筑 BD/% 30.2 20-40 PSF/% 35.3 30-60 95F/% 35.3 30-60 Open low-rise (1-3 层); 植被覆盖 F 0.67 0.6-0.9 ##高,以透水地面为主 ##G H/W 0.71 0.3-0.75 FAR 1.24 - - GCR/% 35.8 - BD/% 45.7 30-50 PSF/% 5.2 <20				DIL/m	10.18	2 10
HCZ6 开敞分布的低层建筑 开敞公布的低层建筑 PSF/% 35.3 30-60 Open low-rise (1-3 层); 植被覆盖 SVF 0.67 0.60.9 PSF/% SVF 0.67 0.30.75 PSF/% SSS BH/m 9.0 LCZ8 大型低层建筑区 大型電気(13 层); BH/m 9.0 310 LCZ8 大型低层建筑区 /	1.076			DTI/ III PD/0/-	12.1	3—10 20 40
所職法法建筑区 所職法法建筑区 所職法法建筑区 所職法法建筑区 53.3 50-00 Open low-rise (1-3 层); 植被覆盖 SVF 0.67 0.6-0.9 単高,以透水地面为主 単品 H/W 0.71 0.3-0.75 FAR 1.24 - GCR/% 35.8 - LCZ8 分布较为密集的低层 BH/m 9.0 3-10 LCZ8 大型建筑(1-3 层); BD/% 45.7 30-50 PSF/% 5.2 <20	LUZO 工始任日建公区	开敞公布的任民建筑	S. J. J. L.	DD/ % DSE/%	30.2 25.2	20-40
open now-rise (1-5 法); 准被復血 5.77 0.67 0.0-0.9 率高,以透水地面为主 単/W 0.71 0.3-0.75 FAR 1.24 - GCR/% 35.8 - BH/m 9.0 310 LCZ8 分布较为密集的低层 BD/% 45.7 30-50 大型低层建筑区 大型建筑(1-3 层); PSF/% 5.2 <20	开赋似层建巩区	$(1_3 E), 枯袖覆盖$	Like Li	SVF	55.5	0.6-0.0
上CZ8 分布较为密集的低层 大型建筑(1-3 层); Image for the constraint of the co	Open low-rise	(1—5)云); 值 饭 復 皿	a to the set	JVI H/W	0.07	0.0-0.9
LCZ8 分布较为密集的低层 日和 1.24 大型低层建筑区 大型建筑(1-3 层); BD/% 45.7 30-50 large low-rise 几乎无植被,以不透水 PSF/% 5.2 <20		举局,以透小地面为土		FAR	0.71	0.5-0.75
LCZ8 分布较为密集的低层 大型低层建筑区 大型建筑(1-3 层); large low-rise 几乎无植被,以不透水 H/W 0.33a UCZ8 人工			And an an an and an an an an	GCR/%	35.8	_
LCZ8 分布较为密集的低层 BD/% 45.7 30—50 大型低层建筑区 大型建筑(1-3 层); BD/% 5.2 <20				DU /	9.0	2 10
大型低层建筑区 分布较为密集的低层 BD/% 43.7 30-50 大型低层建筑区 大型建筑(1-3 层); PSF/% 5.2 <20	1.079			DП/ M DD ///	7.U 15 7	5—10 20 50
大型建筑(1-3 层); FSF/% 5.2 <20 large low-rise 几乎无植被,以不透水 SVF 0.93 >0.7 H/W 0.33 ^a 0.1-0.3 0.1-0.3	LULX 	分布较为密集的低层		DD/ % DSF /0/-	40.7	SU—SU ∠20
Targe tow-rise 几乎无植被,以不透水 5vr 0.95 >0.7 H/W 0.33 ^a 0.1-0.3 0.1-0.3 0.1-0.3 0.1-0.3	入型低层建巩区	大型建筑(1-3层);		r Sr/ % SVF	0.93	<20
Π/W 0.55 0.1–0.5	large low-rise	几乎无植被,以不透水		JVF H/W	0.228	0.1-0.3
地面为王 FAP 1.28	1-5	地面为主		FAR	0.55	0.1 -0.5
CCR/% 59 -				GCR/%	50	_

表1 8种 LCZ 类型的特征、标准及对应研究样区的相关参数

4		38 卷			
续表					
LCZ 类型 LCZ Type	特征 Characteristics	样区卫星影像图 Images of study sites	指标名称 Indicators	样区指标值 Site value	LCZ 分类标准 Standard value
LCZ9 零散建筑区 Sparsely built	自然环境中零散分布 的中小型建筑;地表覆 盖以植被为主		BH/m BD/% PSF/% SVF H/W FAR GCR/%	11.8 ^a 16.2 68.5 0.96 0.23 0.64 68.5	$ \begin{array}{r} 3-10 \\ 10-20 \\ 60-80 \\ >0.8 \\ 0.1-0.25 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$

LCZ:局地气候区,Local climate zone; BH:平均建筑高度,Building height;BD:建筑密度,Building density;PSF:透水面积比,Pervious surface fraction;SVF:天空视域系数,Sky view factor;H/W:高宽比,Height-to-width ratio;FAR:容积率,Floor area ratio;GCR:绿化覆盖率,Green coverage ratio;a:该数值与参考值稍有出入;"—"表示 LCZ 分类体系中无相应指标

基于 QuickBird 卫星影像与百度街景地图,了解南京城市街区布局、几何形态、建筑屋顶现状、地面绿化覆盖等基本特征,结合各 LCZ 类型的定义与指标值,选择了 8 个典型样区进行热效应模拟(图 1),采用 ArcGIS 10.2 对地块矢量化并统计各项指标(表 1)。

图 1 8个研究样区的空间分布 Fig.1 Location and spatial distribution of the 8 study plots LCZ:局地气候区,Local climate zone

2 ENVI-met 4.2 模拟

2.1 模型简介

ENVI-met 由德国美因茨大学地理研究所开发,主要基于 CFD(计算流体动力学, Computational Fluid Dynamics)和热力学原理模拟城市建筑-植被-大气相互关系。模型包括大气、辐射、土壤、植物、建筑 5 个子模块,空间精度为 0.5—10 m,时间步长 10 s,能实现小尺度风、热、湿、日射环境的耦合计算,并输出温湿度、风速、热通量等环境气象因子的三维空间分布。本研究采用 ENVI-met 最新版本 V4.2 开展模拟研究,该版本具有边界条件全强迫(full forcing)功能,可以将气象站逐时观测数据作为模拟边界条件输入,实时考虑模型边界 气象条件变化的影响,因而比以往版本具有更高的模拟精度。

2.2 情景设置

每个 LCZ 样区设置南-北向(街道与主导风向东风平行)、西南-东北向(街道与主导风向 45°相交)两种朝向,样区所有建筑设置传统光屋顶、简易型绿化屋顶(Extensive green roof, EGR)以及复合型绿化屋顶

(Intensive green roof, IGR) 3 种情景,共计模拟 48 种情景。为避免由于边界效应不同造成的结果偏差,每种情景的模型区域统一设置成 260 m×260 m 的正方形,平面网格大小为 2 m×2 m。

简易型屋顶绿化在建筑屋顶添加一层 50 cm 高的草坪,复合型屋顶绿化在草坪之上添加等距排布的桂花树(Osmanthus fragrans),地面绿化统一采用南方街区常见的香樟树(Cinnamomum camphora),表2列出了3种植被的空间形态、生长参数及热物理参数。其余各参数,如建筑高度、建筑布局、地面铺装等,依据样区实际情况建模。

Table 2	Bio-physical paramet	ers of the three user-c	ustomized plant specie	es in the model areas	5
树种 Species	树高 Height/m	冠幅 Canopy width/m	树干高度 Trunk height/m	辐射反射率 Reflectivity	叶面积密度 Leaf area density/ (m²/m³)
香樟 Cinnamomum camphora	8.0	5.0	2.0	0.2	2.0
桂花 Osmanthus fragrans	4.0	5.0	1.0	0.2	2.0
草坪 Grass	0.5	—	—	0.2	0.3

表 2 ENVI-met 4.2 模型区域的植被树种及生理参数

"—"表示该植被无相应生理参数

2.3 模型输入参数

ENVI-met 4.2 模拟的边界条件为研究区温湿度、风速、太阳辐射的逐时分布及不同深度的土壤温湿度等, 表 3 列出了模型模拟的主要输入参数及获取途径。

Table 3	Input parameters for ENVI-met simulation
输入参数 Input parameters	取值 Value
模拟起止时间 Modeling duration	2016.07.31—08.01(共模拟 48 h,取后 24 h的模拟结果进行分析)
太阳辐射 Solar radiation/(W/m ²)	基于研究区经纬度以及云量自动生成
大气温度 Air temperature/℃	自动气象站获取的当日逐时大气温度
相对湿度 Relative humidity/%	自动气象站获取的当日逐时大气湿度
风速(10 m 处) Wind speed at 10m height/(m/s)	3(通过自动气象站观测的地面平均风速插值得到)
风向 Wind direction/°	90(通过城市地面气象站数据计算得到的夏日主导风向)
云量 Cloudiness/octas	低云 1、中云 1、高云 1(城市地面气象站数据)
土壤湿度 Soil wetness/%	上层 50、中层 60、下层 60(模型初始值)
土壤初始温度 Soil initial temperature/℃	上层 20、中层 20、中层 20(模型初始值)

表 3 ENVI-met 4.2 模型输入参数及取值

2.4 模型验证

选择位于南京市东部的紫东国际创意产业园区(ZDICP)开展微气候实测与模型验证。ZDICP 在 LCZ 分 类体系中属于开敞中层建筑区(LCZ5),区内共有 10 栋办公建筑,4 栋建筑上实施了复合型屋顶绿化,其余 6 栋为简易型绿化屋顶(图 2)。在样区内部典型下垫面覆盖处设置微气候观测点 6 个,包括复合型绿化屋顶 (R1)、简易型绿化屋顶(R2)、水面(G1)、铺装地面(G2)、树林(G3)和植树广场(G4)。每个监测点安装温湿 度记录仪(HOBO U23)与风速风向记录仪(Kestrel NK 5500),测量与记录 1.5 m 高处大气温度、相对湿度、风 速风向数据。在样区上风向开阔处安装自动气象站(HOBO U30),获取太阳辐射、大气温湿度、风速、土壤温 湿度等参数作为模型边界条件。风速风向的记录间隔为 1 min/次,其余气象因子的记录间隔为 15 min/次。 微气候观测当日调查并记录了监测点周边植被的树种、树高、胸径、冠幅宽度等数据,作为植被模块的输入 参数。

微气候观测时间为 2016 年 8 月 1 日 0:00 时至 2 日 12:00 时共 36 h, 取前 24 h 的大气温度观测值与模拟

值对比,计算均方根误差(Root mean square error, RMSE)以检验模拟精度(图 2)。结果显示,白天(6:00—14:00时)模拟值普遍高于实测值,而夜晚时段两者的吻合度较高,6个监测点全天的 RMSE 值在 0.33—0.71℃之间(图 2),约为当日平均气温的 1.0—2.2%。与以往 ENVI-met 验证研究报导的 RMSE 值(一般在 1℃以上)相比^[31-32],本研究通过自定义边界条件及深入调查样区土壤植被输入参数,较大程度降低了模拟误差,为后续情景模拟结果的可靠性提供了一定保障。

RMSE:均方根误差,Root mean square error;R1:复合型绿化屋顶;R2:简易型绿化屋顶;G1:水面;G2:铺装地面;G3:树林;G4:植树广场

3 屋顶绿化热效应的三维空间分布

以绿化屋顶和对照光屋顶的大气温度差作为热效应评价指标,正值表示降温效应,负值表示升温效应。 分析屋面 1.5 m 高处和地面 1.5 m 高处 14:00 时和 20:00 时两个时段热效应的空间分布特征,并计算剔除建 筑后其余所有网格降温强度的最大值、最小值和平均值,以指示每个样区屋顶绿化热效应的总体情况,便于样 区间比较。

3.1 平面空间分布特征

图 3—6 显示,绿化屋顶降温效应能从屋面辐射到建筑之间的开敞区域:由植被产生的凉爽空气沿着风向 扩散,在地块下风向(样区西侧)形成"冷岛区",最大降温强度一般位于建筑西侧。西南-东北朝向样区的冷 空气扩散范围普遍大于南-北朝向的样区。

14:00 时,8 个 LCZ 屋面所有网格的降温最大值为 0.64℃(图 3);地面所有网格的降温最大值为 0.55℃ (图 4);20:00 时,屋面和地面所有网格的降温最大值分别为 0.26℃和 0.25℃(图 5—6)。

分样区统计降温平均值,结果显示,14:00时,屋面平均降温强度最大值为 0.44℃(LCZ8,西南-东北朝向, 复合型绿化),最小值为 0.01℃(LCZ1,南-北向,简易型绿化),所有样区降温平均值为 0.15℃;地面平均降温 强度最大值为 0.25℃(LCZ6,西南-东北朝向,复合型绿化),最小值为 0.06℃(LCZ1,南-北向,简易型绿化),所 有地块降温平均值为 0.12℃。20:00时,屋面平均降温强度最大值为 0.12℃(LCZ3,西南-东北朝向,复合型绿 化),最小值为 0.01℃(LCZ9,南-北向,简易型绿化),所有地块降温平均值为 0.06℃;该时段地面平均降温强 度最大值为 0.11℃(LCZ3,西南-东北朝向,复合型绿化),最小值为 0.01℃(LCZ9,南-北向,简易型绿化),所有 地块降温平均值为 0.05℃。

http://www.ecologica.cn

图 3 白天 14:00 时屋面 1.5 m 高处降温强度空间分布

Fig.3 Horizontal distribution of air temperature reduction at 1.5 m height above the roof at 14:00

EGR:简易型绿化,Extensive green roof;IGR:复合型绿化,Intensive green roof;Ave.:样区降温强度平均值,Average air temperature reduction

图 4 白天 14:00 时地面 1.5 m 高处降温强度空间分布

Fig.4 Horizontal distribution of air temperature reduction at 1.5 m height above the ground at 14:00

EGR:简易型绿化, Extensive green roof; IGR:复合型绿化, Intensive green roof; Ave.: 样区降温强度平均值, Average air temperature reduction

图 5 夜晚 20:00 时屋面 1.5 m 高处降温强度空间分布

Fig.5 Horizontal distribution of air temperature reduction at 1.5 m height above the roof at 20:00

EGR:简易型绿化, Extensive green roof; IGR:复合型绿化, Intensive green roof; Ave.: 样区降温强度平均值, Average air temperature reduction

图 6 夜晚 20:00 时地面 1.5 m 高处降温强度空间分布

Fig.6 Horizontal distribution of air temperature reduction at 1.5 m height above the ground at 20:00

EGR:简易型绿化,Extensive green roof;IGR:复合型绿化,Intensive green roof;Ave.:样区降温强度平均值,Average air temperature reduction

3.2 立面空间分布特征

19 期

图 7 显示了复合型屋顶绿化 14:00 时降温强度的纵向空间分布特征:绿化屋顶产生的冷空气能从屋面一 直扩散到地面,改善行人空间的热环境。在紧邻建筑的立面上,离屋顶越近,受到屋面冷空气的影响越大,因 而降温强度越大;但是位于建筑之间开敞区域的立面上,由于屋面冷空气往下沉降与扩散的速度高于往周边 区域的扩散速度,更易在地面形成"冷岛区",因而地面的降温强度反而高于屋面。LCZ1、LCZ4 等样区由于高

Ave.:样区降温强度平均值, Average air temperature reduction

层建筑影响,屋面冷空气对地面热环境的影响非常微弱,而 LCZ3、LCZ5 等中低层街区的屋面和地面两个高度 降温强度梯度变化不大;另外,西南-东北朝向的街区比同类型的南-北朝向街区更有利于冷空气扩散,因此热 效应的影响范围更大。

4 热效应的影响因素

4.1 绿化方式

以草本和小乔木搭配种植的复合型绿化屋顶的降温效应明显优于单草本种植的简易型绿化屋顶:前者最高可降低屋面大气温度 0.75℃、降低地面大气温度 0.62℃;后者在两个高度的降温强度最大值分别为 0.33℃和 0.30℃。两种绿化方式的降温强度差异在白天较夜间显著(图 8):14:00时,复合型和简易型绿化在屋面的降温强度平均值分别为 0.22℃和 0.04℃,地面的平均降温强度分别为 0.17℃和 0.06℃;20:00时,复合型和简易型绿化的屋面降温强度平均值分别为 0.07℃和0.03℃,地面的平均降温强度分别为 0.06℃和 0.02℃。

4.2 城市形态结构

以复合型绿化为例,比较高层、中层、低层样区所有情景的降温平均值,分析建筑高度的影响;比较紧凑型 和开敞型两类街区所有情景的降温平均值,分析开敞程度对热效应影响;比较南-北朝向和西南-东北朝向情 景的降温平均值,分析建筑朝向的影响(图9)。

图 9 不同高度、开敞度及朝向的 LCZ 样区的复合型绿化屋顶平 均降温强度对比

Fig.9 Comparison of green-roof thermal performance amongst LCZs with different building height, compactness and orientation

结果显示,高层(紧凑+开敞)、中层(紧凑+开敞)和低层(紧凑+开敞)建筑区在14:00时的降温平均值分 别为0.09、0.19、0.25℃;20:00时的降温平均值分别为0.04、0.06、0.09℃,表明降温强度随建筑高度升高而递 减的趋势。紧凑型(高层+中层+低层)和开敞型(高层+中层+低层)建筑区在14:00时的降温平均值分别为 0.21℃和0.16℃,20:00时的降温平均值分别为0.08℃和0.06℃,表明降温强度随开敞程度增加而降低的趋 势。南-北向和西南-东北向白天的降温平均值分别为0.17℃和0.22℃,夜晚降温平均值分别为0.06℃和 0.07℃,表明与主导风向相交的建筑布局相比平行布局具有更大降温潜能。

进一步采用 SPSS 分析降温强度与城市形态结构因子之间的相关性。表 4 显示,建筑高度与屋面和地面 热效应之间均呈现显著负相关(*P* = 0.01),建筑越高,降温强度越弱;建筑密度与屋面降温强度之间为正相关 (*P* = 0.05),但与地面降温强度之间的相关性不显著;高宽比、容积率与屋面、地面降温强度均为显著负相关, 前者为 0.05 水平,后者为 0.01 水平;天空视域系数及地面绿化覆盖率两个因子与屋面、地面降温强度之间均 无显著相关性。

Table 4 Correlation between green-roof thermal performance and urban geometry factors									
热效应指标 Thermal-effect indicators	BH	BD	SVF	H/W	FAR	GCR			
屋面降温强度	-0.801 **	0.528 *	0.373	-0.603 *	-0.624 **	-0.309			
Air temperature reduction at 1.5 m height above the roof	0.000	0.035	0.155	0.013	0.010	0.243			
地面降温强度	-0.850 **	0.470	0.254	-0.598 *	-0.687 **	-0.230			

	表 4	屋顶绿化热效应与城市形态结构因子之间的相关性分析
Table 4	Correlatio	n between green-roof thermal performance and urban geometry factor

** 表示显著水平 P≤0.01,* 表示显著水平 0.01<P≤0.05;BH:建筑高度,Building height;BD:建筑密度,Building density;SVF:天空视域系数,Sky view factor;H/W:高宽比,Height-to-width ratio;FAR:容积率,Floor area ratio;GCR:绿化覆盖率,Green coverage ratio

0.343

0.014

0.003

0.066

0.000

4.3 LCZ 类型

above the ground

Air temperature reduction at 1.5 m height

将8个研究样区复合型绿化情景14:00时的降温强度进行排序,分析屋顶绿化热效应与LCZ类型之间的 关系。表5显示,高层建筑区(LCZ1、LCZ4)的屋面与地面降温强度始终排在末两位,而低层建筑区(LCZ3、 LCZ6)的4个热效应指标值均排在前3位,表明建筑高度是热效应的关键影响因子;大型低层建筑区(LCZ8) 的屋面降温强度排第1位,但地面降温强度排3—5位,进一步说明了建筑密度对屋面和地面热效应的反向影 响:密度高意味着更多的屋顶绿化空间,可显著提高屋面降温强度,但是密集排布的建筑阻挡空气流动,可能 影响冷空气往地面和周边的扩散。以综合热效应作为依据进行评价,LCZ3(紧凑低层建筑区)、LCZ6(开敞低 层建筑区)为最适宜进行屋顶绿化的形态结构类型;LCZ2(紧凑中层建筑区)、LCZ5(开敞中层建筑区)、LCZ8 (大型低层建筑区)与 LCZ9(零散建筑区)为一般适宜类型;而 LCZ1(紧凑高层建筑区)与 LCZ4(开敞高层建 筑区)的适建性相对较低。

热效应指标 Thermal effect indicators		14:00 时降温强度排序 Ranking of air temperature reduction at 14:00 h/℃							
		1	2	3	4	5	6	7	8
屋面	南-北向	LCZ8	LCZ3	LCZ6	LCZ5	LCZ2	LCZ9	LCZ4	LCZ1
Roof	S-N	(0.27)	(0.26)	(0.24)	(0.18)	(0.17)	(0.15)	(0.09)	(0.07)
	西南-东北向 SW-NE	LCZ8 (0.44)	LCZ3 (0.34)	LCZ6 (0.33)	LCZ5 (0.29)	LCZ2 (0.26)	LCZ9 (0.20)	LCZ4 (0.11)	LCZ1 (0.09)
地面 Ground	南-北向 S-N	LCZ6 (0.22)	LCZ3 (0.21)	LCZ8 (0.19)	LCZ5 (0.16)	LCZ2 (0.15)	LCZ9 (0.12)	LCZ4 (0.07)	LCZ1 (0.06)
	西南-东北向 SW-NE	LCZ6 (0.25)	LCZ3 (0.24)	LCZ5 (0.22)	LCZ2 (0.21)	LCZ8 (0.21)	LCZ9 (0.15)	LCZ4 (0.10)	LCZ1 (0.08)

表 5 LCZ 样区之间的降温强度排序 Table 5 Ranking of green-roof thermal performance of the 8 study sites (local climate zones)

括号内为该 LCZ 类型的降温强度

5 讨论与结论

城市微气候是由建筑-地表覆盖-大气之间相互作用形成的复杂系统。建筑高度、密度等形态结构要素控制着城市冠层内部辐射分配与空气流动过程,影响太阳辐射、温湿度、风速等微气候因子^[33],这些因子进一步作用于绿地遮阴、蒸发蒸腾及冷空气传输过程,影响降温强度与范围^[16]。传统的城市绿地热效应评价研究主要关注绿地内部与其它地表覆盖类型之间的温度差异,并着重分析面积、植被构成、景观格局等绿地本身属性因素的影响。本研究以绿化屋顶为研究对象,将热效应评价范围扩展至绿地之外、街区之内的城市冠层三维空间,并初步探讨了城市形态结构因子的影响。

研究结果显示,街区尺度屋顶绿化不仅能改善建筑屋面热环境,而且由于冷空气的对流和下沉效应,绿化 产生的"冷岛"能扩展到建筑之间的近地面区域。8个研究样区的屋面降温最大值为0.64℃,平均降温强度可

0.391

达 0.44℃;地面降温最大值为 0.55℃,平均降温强度可达 0.25℃。有关大面积屋顶绿化热环境效应的模拟研 究在国外报导较多,如 Bass 等^[23]对加拿大多伦多市的气候模拟结果显示,若该市 5%的建筑实施屋顶绿化可 使夏季气温下降 0.5℃;Smith 等^[25]对美国芝加哥市的模拟结果显示,该市所有屋顶 100%绿化可使夜间温度 下降 2—3℃。与以上研究相比,本研究模拟所得的降温强度值偏小,除了研究区气候条件不同之外,研究尺 度及模拟方法不同也是造成差异的主要原因。尽管如此,研究结果仍反映了亚热带城市地区,街区尺度屋顶 绿化、特别是复合型绿化对城市冠层三维空间热环境的可能改善效果。若将温度降低导致的建筑能耗及空调 热排放削减考虑在内,热效应将更加突出。因此,在建设用地日益稀缺的大城市地区,大面积屋顶绿化不失为 缓解城市热岛的一种有效途径。

通过研究样区之间的热效应比较以及降温强度与形态结构因子之间的相关分析,识别了几个关键影响因子。首先,建筑高度与降温强度最为相关,低层建筑区(LCZ3、LCZ6)实施屋顶绿化后产生的降温效应明显高于高层建筑区(LCZ1、LCZ4)。建筑越高,屋顶冷空气往下传输的距离越长,因而对地面热环境的改变相对微弱。当建筑高度达到 25 m以上时(LCZ1 和 LCZ4 样区),屋顶绿化对地面热岛效应的缓解效果可忽略不计。 建筑密度对降温强度的影响具有双面性,建筑密度高意味着屋顶绿化面积大,有利于屋面降温;但是当建筑单体基底面积过大时,可能影响自然通风和冷空气往地面的扩散速率。这种双面作用体现在 LCZ8 样区(大型低层建筑区),由于建筑密度在所有样区中最高,其屋面降温强度也排在第1位,但是由于建筑单体庞大,建筑间的空间通透性不足影响了空气流动,地面降温强度仅排在第3 位和第5 位。此外,研究发现,在同一类型LCZ 样区中,街道走向与主导风向呈 45°夹角时比与主导风向平行具有更高降温强度,这可能因为前者具有较低的迎风面积比,对来流风阻挡较少,增强了植被蒸发蒸腾效应,同时由于较长的气流传输路径扩大了冷空气传输范围。

基于以上研究结果,提出以削减城市热岛为导向的屋顶绿化选址与设计原则:(1)以草坪和小乔木搭配 的复合型绿化屋顶由于具有较高的叶面积指数,在削弱太阳辐射、降低屋顶表面温度以及促进蒸发蒸腾方面 均优于以草坪种植为主的简易型绿化屋顶,因此,在屋顶承重符合要求的条件下,选择复合型绿化方式能最大 程度改善街区热环境;(2)如果采用复合型和简易型搭配的屋顶绿化方式,则宜将复合型绿化布置在上风向 屋面,可延伸冷空气传输路径,而将公共活动空间安排在下风向区域,以便汇入更多的凉爽空气;(3)大面积 屋顶绿化宜选择在低层、高密度、街道与主导风向存在一定夹角的建筑区;在建筑密度相同的情况下,分散比 集中的建筑布局更为适宜。

由于是初步探讨,研究结果无法深入剖析屋顶绿化热效应三维空间分布的形成原理以及形态结构因子对 热效应的作用机理,后续研究可基于街区理想模型和参数研究(parametric study),分析城市冠层热量平衡方 程各部分的动态变化过程,揭示热效应形成机制。此外,本研究应用的 ENVI-met 4.2 模型的模拟精度虽比以 往研究有大幅度提高,但与模拟所得的热效应强度相比误差仍然较大,未来研究可进一步修正模型输入参数, 提高模拟精度。

参考文献(References):

- [1] 葛荣凤,王京丽,张力小,田光进,冯悦怡.北京市城市化进程中热环境响应.生态学报,2016,36(19):6040-6049.
- [2] 孙铁钢,肖荣波,蔡云楠,王耀武,吴昌广.城市热环境定量评价技术研究进展及发展趋势.应用生态学报,2016,27(8):2717-2728.
- [3] 孔繁花, 尹海伟, 刘金勇, 闫伟姣, 孙常峰. 城市绿地降温效应研究进展与展望. 自然资源学报, 2013, 28(1): 171-181.
- [4] 冯悦怡, 胡潭高, 张力小. 城市公园景观空间结构对其热环境效应的影响. 生态学报, 2014, 34(12): 3179-3187.
- [5] 王帅帅,陈颖彪,千庆兰,谢锦鹏.城市公园对城市热岛的影响及三维分析——以广州市主城区为例. 生态环境学报, 2014, 23(11): 1792-1798.
- [6] Kong F H, Sun C F, Liu F F, Yin H W, Jiang F, Pu Y X, Cavan G, Skelhorn C, Middel A, Dronova I. Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer. Applied Energy, 2016, 183: 1428-1440.
- [7] 刘凤凤, 闫伟姣, 孔繁花, 尹海伟, 班玉龙, 徐文彬. 基于气温实地调查的城市绿地降温效应研究现状与未来展望. 应用生态学报, 2017, 28(4): 1387-1396.

- [8] 贾宝全, 仇宽彪. 北京市平原百万亩大造林工程降温效应及其价值的遥感分析. 生态学报, 2017, 37(3): 726-735.
- [9] 赵定国,薛伟成.轻型屋顶绿化的降温效果.上海农业学报,2006,22(1):53-55.
- [10] 殷丽峰,李树华.北京地区绿化屋面对屋顶温度变化影响的研究.中国园林, 2006, 22(4):73-76.
- [11] 吴艳艳,庄雪影,雷江丽,钟炼.深圳市重型与轻型屋顶绿化降温增湿效应研究.福建林业科技, 2008, 35(4): 124-129.
- [12] Spolek G. Performance monitoring of three ecoroofs in Portland, Oregon. Urban Ecosystems, 2008, 11(4): 349-359.
- [13] Eumorfopoulou E A, Kontoleon K J. Experimental approach to the contribution of plant-covered walls to the thermal behaviour of building envelopes.
 Building and Environment, 2009, 44(5); 1024-1038.
- [14] 赵定国, 唐鸣放, 章正民. 轻型屋顶绿化对屋面温度的影响研究. 中国建筑防水, 2010, (11): 5-7.
- [15] 孙挺, 倪广恒, 唐莉华, 张书函, 孔刚. 绿化屋顶热效应的观测试验. 清华大学学报: 自然科学版, 2012, 52(2): 160-163.
- [16] Jim C Y, Peng L L H. Weather effect on thermal and energy performance of an extensive tropical green roof. Urban Forestry & Urban Greening, 2012, 11(1): 73-85.
- [17] Jim C Y, Peng L L H. Substrate moisture effect on water balance and thermal regime of a tropical extensive green roof. Ecological Engineering, 2012, 47: 9-23.
- [18] Kumar R, Kaushik S C. Performance evaluation of green roof and shading for thermal protection of buildings. Building and Environment, 2005, 40 (11): 1505-1511.
- [19] Alexandri E, Jones P. Developing a one-dimensional heat and mass transfer algorithm for describing the effect of green roofs on the built environment: Comparison with experimental results. Building and Environment, 2007, 42(8): 2835-2849.
- [20] Sailor D J. A green roof model for building energy simulation programs. Energy and Buildings, 2008, 40(8): 1466-1478.
- [21] Tang X, Qu M. Phase change and thermal performance analysis for green roofs in cold climates. Energy and Buildings, 2016, 121: 165-175.
- [22] Banting D, Doshi H, Li J, Missios P. Report on the environmental benefits and costs of green roof technology for the City of Toronto. Toronto: Ryerson University, 2005.
- [23] Bass B, Krayenhoff S. Mitigating the urban heat island with green roof infrastructure. Toronto, Ontario: Urban Heat Island Summit, 2002.
- [24] Rosenzweig C, Solecki W D, Slosberg R B. Mitigating New York City's heat island with urban forestry, living roofs, and light surfaces. New York City regional heat island initiative. Albany, New York: New York State Energy Research and Development Authority, 2006.
- [25] Smith K R, Roebber P J. Green roof mitigation potential for a proxy future climate scenario in Chicago, Illinois. Journal of Applied Meteorology and Climatology, 2011, 50(3): 507-522.
- [26] 邱新法,顾丽华,曾燕,姜爱军,何永健.南京城市热岛效应研究. 气候与环境研究, 2008, 13(6): 807-814.
- [27] Stewart I D, Oke T R. Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 2012, 93 (12): 1879-1900.
- [28] 林中立, 徐涵秋. 基于 LCZ 的城市热岛强度研究. 地球信息科学学报, 2017, 19(5): 713-722.
- [29] 张云伟, 顾兆林, 周典. 城市局部气候分区及其参数化条件下风环境模拟. 地球环境学报, 2016, 7(5): 480-486, 493-493.
- [30] 陈恺, 唐燕. 城市局部气候分区研究进展及其在城市规划中的应用. 南方建筑, 2017, (2): 21-28.
- [31] Yang X S, Zhao L H, Bruse M, Meng Q L. Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Building and Environment, 2013, 60: 93-104.
- [32] Middel A, Häb K, Brazel A J, Martin C A, Guhathakurta S. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landscape and Urban Planning, 2014, 122: 16-28.
- [33] Bourbia F, Boucheriba F. Impact of street design on urban microclimate for semi-arid climate (Constantine). Renewable Energy, 2010, 35(2): 343-347.