DOI: 10.5846/stxb201707221318

葛晓敏, 唐罗忠, 王瑞华, 李勇, 朱玲, 贾志远, 丁晖.杨树人工林生态系统降水再分配及主要离子特征.生态学报,2018,38(14): - . Ge X M, Tang L Z, Wang R H, Li Y, Zhu L, Jia Z Y, Ding H. Reallocation and chemical characteristics of atmospheric precipitation in a poplar plantation. Acta Ecologica Sinica, 2018, 38(14): - .

杨树人工林生态系统降水再分配及主要离子特征

葛晓敏^{1,2,3},唐罗忠^{2,*},王瑞华²,李 勇²,朱 玲²,贾志远²,丁 晖³

1南京大学生命科学学院,南京 210046

2南京林业大学林学院,南京 210037

3环境保护部南京环境科学研究所/武夷山国家生物多样性综合观测站/国家环境保护武夷山生态环境科学观测研究站/国家环境保护生物安 全重点实验室,南京 210042

摘要:大气降水是森林生态系统养分输入的主要途径之一,对养分的生物地球化学循环有着重要的意义。对 13 年生杨树人工 林林外雨、树干流、林内雨和地表径流等水文过程中的养分特征进行了调查分析,旨在了解该生态系统的养分输入与输出规律, 为杨树人工林可持续经营提供依据。结果表明,从 2013 年 11 月至 2014 年 10 月,杨树人工林生态系统林外雨量为 1154.1 mm, 树干流量仅占大气降水量的 2.3%,15.4%的大气降水被杨树人工林的冠层截留;林内雨、树干流与大气降水量(林外雨)的动态 变化规律相似。各类降水年加权平均 pH 值表现为林内雨>林外雨>树干流;各类降水的离子浓度动态变化规律基本一致,即在 降水量较小的 11 月至次年 1 月份,各阴阳离子的浓度普遍较高,在降水量较大的 2—9 月份,阴阳离子浓度普遍较低。SO²-S 和 Ca²⁺分别是各类降水中的主要阴离子和阳离子;整体上,树干流的离子浓度>林内雨>大气降水;林内雨是养分输入的主要形 式,通过林内雨输入林地较多的养分离子是 Ca²⁺和 K⁺,分别为 70.83 kg hm⁻² a⁻¹和 63.31 kg hm⁻² a⁻¹;地表径流和土壤渗漏是养 分输出的主要形式,输出林地较多的离子是 Cl⁻和 Ca²⁺,分别为 196.47 kg hm⁻² a⁻¹和 123.09 kg hm⁻² a⁻¹,其次为 SO²₄-S、Mg²⁺、 Na⁺、K⁺;NH⁴₄-N 和 NO⁻₃-N 的输出量不足输出离子总量的 1%。所以,从水文过程看,杨树人工林生态系统无机氮(NH⁴₄-N 和 NO⁻₃-N)和 K⁺表现为净积累,净积累量分别为 10.9 kg hm⁻² a⁻¹和 56.4 kg hm⁻² a⁻¹,其他离子表现为净损失,其中 Cl⁻的净损失量 达 179.8 kg hm⁻² a⁻¹左右,其他离子损失量< 50 kg hm⁻² a⁻¹。

关键词:杨树人工林;生物地球化学循环;水文过程;养分循环;养分离子

Reallocation and chemical characteristics of atmospheric precipitation in a poplar plantation

GE Xiaomin^{1,2,3}, TANG Luozhong^{2,*}, WANG Ruihua², LI Yong², ZHU Lin², JIA Zhiyuan², DING Hui³

1 School of Life Science, Nanjing University, Nanjing 210046, China

2 College of Forestry, Nanjing Forestry University, Nanjing 210037, China

3 Research Center for Nature Conservation and Biodiversity/State Biodiversity Comprehensive Observation Station for Wuyi Mountains / State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Wuyi Mountains/State Environmental Protection Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China

Abstract: Atmospheric precipitation is an important vehicle for nutrient input and nutrient return in forest ecosystems; it plays a significant role in nutrient biogeochemical cycling. In the present study, we investigated the amount of precipitation and nutrient ion concentrations of atmospheric precipitation, throughfall, stemflow, and surface runoff in a 13-year-old poplar plantation during the period of November 2013 to October 2014. The results showed that: The annual bulk

基金项目:国家科技支撑计划(2015BAD09B0203);教育部高等学校博士学科点专项科研基金(20133204110001);国际科技合作项目 (2011DFA30490);环保部事业费项目"生物多样性保护专项"

收稿日期:2017-07-22; 网络出版日期:2018-00-00

* 通讯作者 Corresponding author.E-mail: luozhongtang@njfu.edu.cn

http://www.ecologica.cn

precipitation from November 2013 to October 2014 was 1154.1 mm. The temporal fluctuations in precipitation amounts in throughfall and stemflow were similar to those with bulk precipitation. Only 2.3% of the annual bulk precipitation was partitioned into stemflow. After subtracting throughfall and stemflow, approximately 15.4% of the annual precipitation was intercepted by the forest canopy. The highest annual average pH value was in throughfall, followed by bulk precipitation and stemflow. The temporal fluctuations in different ion concentrations in bulk precipitation, throughfall, and stemflow were similar. The ion concentrations in different kinds of precipitation were higher during November to January, which had less bulk precipitation; whereas the ion concentrations were lower during February to September, which experienced greater bulk precipitation. The dominant ions were SO₄²⁻-S and Ca²⁺ in bulk precipitation, throughfall, and stemflow. The order of ion concentrations generally was stemflow > throughfall > bulk precipitation. The annual weighted average concentrations of SO_4^{2-} -S, Ca^{2+} , Cl^- , K^+ , and Mg^{2+} in throughfall were 1.9, 1.3, 1.4, 5.6, and 2.0 times that of the corresponding ions in bulk precipitation, respectively. However, the annual weighted average concentration of K⁺ in stemflow was 20 times that in bulk precipitation; the concentrations of the other nutrient ions in stemflow were 2-6 times that of those in bulk precipitation. The primary form of nutrient input was throughfall, and the majority of the nutrient ions input into the plantation ecosystem through throughfall were Ca²⁺ and K⁺ with 70.83 and 63.31 kg hm⁻² a⁻¹, respectively; and nutrient output during hydrological fluxes occurred mainly through surface runoff and deep percolation, the most nutrient ions, which were output of the plantation ecosystem, were Cl⁻ and Ca²⁺ with 196.47 and 123.09 kg hm⁻² a⁻¹, respectively, followed by SO_4^{2-} -S, Mg^{2+} , Na^+ , and K^+ , whereas the NO_3^- -N and NH_4^+ -N only accounted for < 1% of total nutrient ions that were output from the ecosystem. For the annual nutrient element fluxes, inorganic N (NO_3^--N and NH_4^+-N) and K⁺ had a positive balance, and the other nutrient ions showed a negative balance. The net accumulations of inorganic N and K⁺ were 10.9 and 56.4 kg hm⁻² a⁻¹, respectively; the net losses of Cl⁻, and Mg²⁺, Ca²⁺, SO₄²⁻-S, and Na⁺ through surface runoff and deep percolation were 179.8 and < 50 kg hm⁻² a⁻¹, respectively.

Key Words: poplar plantation; biogeochemical cycling; hydrological fluxes; nutrient cycling; nutrient ion

大气降水不仅是森林生态系统水分的主要来源,也是养分的主要来源^[1-3]。森林主要是通过冠层截留、 凋落物层截持、土壤入渗、蒸散以及迳流等途径来分流大气降水^[4]。不同的森林结构(物种结构和空间结构) 和季节会导致森林水文的多样性,例如大气降水通过林冠时,常常会由于枝叶的吸附和淋溶作用,使穿透水和 树干茎流的养分含量发生变化,同时也使生态系统的水质发生变化^[5]。与地表凋落物和土壤有机质分解所 产生的养分相比,通过降水所输入的养分对促进植物生长和养分循环具有更加直接的作用^[6-8]。所以,在森 林生态系统物质循环中,大气降水具有极其重要的作用,研究森林生态系统降水再分配及其养分特征不仅为 评价森林的环境效应具有重要意义,也为研究森林生态系统的生物地球化学循环规律提供重要依据。

我国杨树人工林面积已达 850 多万公顷,居世界第一。杨树人工林为我国的木材生产、生态防护、经济建 设起到了重要作用。迄今为止,针对杨树人工林的品种选育、立地选择、造林与营林技术等方面已开展了深入 研究^[9-12],取得了大量的成果,但是关于杨树人工林生态系统的降水规律及其养分特征却鲜有报道。本文以 13 年生的杨树人工林为对象,对林外雨、林内雨、树干流和地表径流等降水分配规律及其养分特征进行了调 查研究,旨在为了解杨树人工林生态系统的养分输入与输出状况提供依据,也为杨树人工林可持续经营提供 参考。

1 研究地概况

南京市浦口区位于 118°37′E,32°04′N,属北亚热带季风气候区,年均降雨量 1102 mm,年均气温 14.4℃, 全年无霜期 240 d 左右。被调查林分为 2002 年 3 月营造的 I-69 杨(*Populus deltoides* Bartr. cv. "Lux" I-69/ 55)成片林,面积 150 hm²,株行距 6 m×6 m,林相整齐,林木保存率 98.2%。调查时树龄 13 年,平均胸径 27.9 cm,平均树高 26.1 m。林地土壤为重壤土,0—50 cm 层土壤容重为 1.37 g/cm³,全氮、全磷、全钾和有机 质含量分别为 0.58、0.38、0.52 g/kg 和 16.07 g/kg,土壤 pH 值为 7.8。林下植被丰富,但主要是天明精 (*Carpesium abrotanoides*)、窃衣(*Torilis scabra*)、白苏(*Perilla frutescens*)、反枝苋(*Amaranthus retroflexus*)等草本 植物。

2 调查方法

2.1 降水收集方法

2013 年 10 月,在林分内设置 40 m × 40 m 的固定样地,放置各类降水收集装置,于每次降水后及时收集 装置内的雨水,测定水量,混匀后取 200 ml 水样,分别测定 pH 值和电导率,并用孔径为 0.45 μm 的滤膜抽滤 后分析 NO₃⁻-N,SO₄²⁻-S,Cl⁻等阴离子和 Ca²⁺、Mg²⁺、K⁺、Na⁺、NH₄⁺-N 等阳离子浓度。各类降水的收集时间为 2013 年 11 月—2014 年 10 月,为期 1 年。

(1)林外雨的收集

在距林分 200 m 左右的空旷地上,采用自制的雨水收集器收集降雨,即设置 2 个容积均为 18.9 L 的塑料桶(口径 5 cm),用两个沙袋支撑并固定其位置;将口径为 27 cm 的圆形塑料漏斗下端插入塑料桶,并用 3 根带钩的不锈钢弹簧将漏斗与塑料桶连接在一起,在漏斗边沿下方的 3 个方向分别用 3 根高度相同、嵌入地下的木桩支撑和平衡漏斗,使漏斗承雨口始终保持水平状态。

(2)林内雨的收集

在固定样地内随机布设6个雨水收集器,收集器规格及固定方法同林外雨。

(3)树干流的收集

对固定样地中的林木进行每木检尺,选取4株平均木,将内径3 cm,长2 m 的塑料软管对称剖开,分别缠绕在树干上,并用玻璃胶密封塑料管与树皮之间的缝隙,将塑料管尾部插入到带盖的塑料桶中,用以收集树干流。

(4)地表径流的收集

在固定样地内设置 2 个小样地,用硬质塑料板嵌入地表 10 cm 左右,分别围成 8.708 m²和 9.12 m²的 2 个 小型围堰,在围堰下方放置大型塑料箱,通过塑料水管将地表径流导引至塑料箱中。

2.2 测定方法

不同类型降水的 pH 值和电导率分别用 pH 计和电导仪测定。NO₃⁻-N,SO₄²⁻-S,Cl⁻等阴离子和 Ca²⁺、Mg²⁺、K⁺、Na⁺、NH₄⁺-N 等阳离子浓度采用液相色谱仪测定(Thermo Scientific Ion Chromatography System, DIONEX AS-AP, Japan)。

2.3 计算方法

(1)降水量的计算

树干流量(mm)以样木的树干流量和单位面积内的杨树株数的乘积进行推算。

林外雨量(mm)和林内雨量(mm)根据收集降水的漏斗口径面积进行推算;地表径流量(mm)根据径流场 面积进行推算。

(2)冠层截留量的计算

冠层截留量(mm)=大气降水量-林内雨量-树干流量

(3)蒸发散量的计算

根据 Thornthwaite 法^[13-14]进行计算:

$$E_0 = 16(10T/I)^{a}$$

$$a = (0.675I^{3} - 77.1I^{2} + 17921I + 492390) \times 10^{-6}$$

$$I = \sum (T/5)^{1.514}$$

http://www.ecologica.cn

 E_0 :月潜在蒸发散量(mm);T:大气月平均温度(℃);a:因地而异的常数;I:一年 12 个月的热量指标 总和。

(4)土壤水分渗漏量(mm)=林内雨量+树干流量-地表径流量-蒸发散量^[15-16]

(5)数据处理方法

林外雨、林内雨、树干流以及地表径流中的 pH 值、电导率及各类离子的年平均浓度根据容积加权平均法 求得。由于 2014 年 10 月试验地降水极少,各个容器中没有收集到足够数量的水分进行分析,所以下文中的 各类降水数据均以 2013 年 11 月—2014 年 9 月表示。

2.4 数据处理

数据整理及绘图使用 Microsoft Excel 2007 软件,单因素方差分析采用 SPSS 18.0 统计软件。

3 结果与分析

3.1 降水量再分配动态

杨树人工林林外雨、林内雨和树干流的水量动态如图 1 所示。从 2013 年 11 月—2014 年 9 月年大气降水 量为 1154.1 mm(由于 2014 年 10 月试验地降水极少,故在图中没有标示,下同),与多年的平均降水量 1102 mm 十分相近。其中 75%以上的大气降水发生在 4 月—9 月间,7 月份的累计降水量最大,为 206.2 mm;单次 降水量最大是 2014 年 4 月 24 日,达 130 mm。林内雨和树干流与林外雨的降水量动态相似。树干流占林外 雨的 2.3%,而 15.4%的大气降水被杨树人工林的冠层截留,年截留量为 177.2 mm。

Fig.1 Temporal fluctuations of precipitation amount in bulk precipitation, throughfall and stemflow

3.2 降水的 pH 值动态

如图 2 所示,在本研究中,林外雨的 pH 值基本在 6.3 至 8.4 之间,最大值出现在 5 月,最小值出现在 9 月, 年加权平均值为 7.3;林内雨的 pH 值范围为 6.7 至 9.6,最大值在 9 月,最小值在 3 月,年加权平均值为 7.9;树 干流的 pH 值范围为 5.6 至 8.2,最大值在 9 月,最小值在 12 月,年加权平均值为 6.9。所以平均 pH 值表现为 林内雨>林外雨>树干流。

3.3 降水的电导率动态

如图 3 所示,不同降水的电导率表现为林外雨<林内雨<树干流。林外雨的电导率范围是 12.2—44.8 μs/ cm,最大值出现在 11 月份,最小值出现在 6 月份,年加权平均值为 19.2 μs/cm;林内雨的电导率范围是 18.3— 59.3 μs/cm,最大值也在 11 月份,最小值在 6 月份,年加权平均值为 25.2 μs/cm;树干流的电导率范围是 32.7—105.7 μs/cm,最大值出现在 1 月份,最小值出现在 7 月份,年加权平均值为 44.7 μs/cm。

图 2 林外雨、林内雨和树干流的 pH 值动态

Fig.3 Temporal fluctuations of electrical conductivity in bulk precipitation, throughfall and stemflow

3.4 林外雨离子浓度动态

如图 4 所示,林外雨中的阴离子以 $SO_4^{2-}S$ 为主,其年加权平均浓度为 0.1491 mmol/L,占阴离子总浓度的 60%以上;且 $SO_4^{2-}S$ 浓度在不同时期的变动幅度较大(0.0578—0.5462 mmol/L);而 Cl⁻和 $NO_3^{-}N$ 的浓度较低, 变动幅度较小,年加权平均浓度分别为 0.0330 mmol/L 和 0.0615 mmol/L。林外雨中阳离子以 Ca²⁺为主,年加 权平均浓度为 0.2781 mmol/L,占阳离子总浓度的 64%左右,浓度变化范围在 0.1382—0.8674 mmol/L 之间,其 他阳离子浓度较低, Na⁺, NH₄⁺-N, K⁺和 Mg²⁺年加权平均浓度分别为 0.0193、0.0580、0.0303 mmol/L 和 0.0478 mmol/L。在降水量较小的 11 月—次年 1 月份(图 1),各阴阳离子的浓度普遍较高,在降水量较大的 2—9 月, 阴阳离子浓度普遍较低。

3.5 林内雨离子浓度动态

如图 5 所示,林内雨中各阴阳离子浓度随时间的变动规律与林外雨相似,在降水量较小的 11 月—次年 1 月份,各阴阳离子的浓度较高,在降水量较大的 2—9 月,阴阳离子浓度较低。SO₄²⁻-S 和 Ca²⁺分别是林内雨中 主要的阴离子和阳离子,且林内雨中的 SO₄²⁻-S 和 Ca²⁺平均浓度分别是林外雨的 1.9 倍和 1.3 倍。林内雨中 Cl⁻、K⁺和 Mg²⁺的年加权平均浓度分别为 0.0463、0.1708 mmol/L 和 0.0478 mmol/L,分别是林外雨相应离子浓

度的 1.4、5.6 倍和 2.0 倍。而 Na⁺、NH₄⁺-N 和 NO₃⁻-N 的年加权平均浓度比林外雨略低。

3.6 树干流离子浓度动态

如图 6 所示,树干流中各阴阳离子浓度动态与林外雨相似,在降水量较小的 11 月—次年 1 月份,各阴阳 离子的浓度较高,在降水量较大的 2—9 月,阴阳离子浓度较低;SO²⁻-S 是树干流中的主要阴离子,其年加权平 均浓度为 0.8545 mmol/L。与林外雨不同的是 K⁺和 Ca²⁺均成为树干流中主要阳离子,二者的年加权平均浓度 分别为 0.5886 mmol/L 和 0.5524 mmol/L,其他离子如 Cl⁻、NO³-N、Na⁺、NH⁴-N 和 Mg²⁺的年加权平均浓度分别 为 0.1090、0.1825、0.0402、0.1740 mmol/L 和 0.2389 mmol/L,明显低于 SO²⁻-S、K⁺和 Ca²⁺浓度。但树干流中各 离子的浓度均明显高于林外雨。其中 K⁺的年加权平均浓度是林外雨的 20 倍左右,其他离子的浓度也是林外 雨的 2—6 倍。

3.7 地表径流离子浓度动态

如图 7 所示,地表径流中的离子浓度变化趋势与林外雨相似,即 12 月份的离子浓度明显高于其他时期; SO₄²⁻-S 和 Ca²⁺分别是地表径流中主要的阴离子和阳离子,其平均浓度分别是林外雨的 2.7 倍和 3.5 倍。其他

7

图 5 林内雨中主要阴阳离子浓度的动态 Fig.5 Temporal fluctuations of concentration of elements in throughfall

离子如 Cl⁻和 NO₃⁻N 的年加权平均浓度分别为 0.1576 mmol/L 和 0.0880 mmol/L,分别是林外雨的 4.7 倍和 1.4 倍;Na⁺,K⁺和 Mg²⁺的年加权平均浓度分别为 0.0555、0.1869 mmol/L 和 0.2570 mmol/L,分别是林外雨的 2. 8、6.1 倍和 5.3 倍;而地表径流中的 NH₄⁺-N 年加权平均浓度为 0.0438 mmol/L,为林外雨的 70%左右。 **3.8** 降水通量主要离子的输入和输出

表 1 为林外雨、林内雨、树干流和地表径流以及土壤渗漏中主要离子的年输入与输出量。如表所示,林内雨是养分输入的主要形式,各养分离子年输入量占总输入量的比例均在 90%以上。通过林内雨和树干流输入的 SO₄²⁻-S 和 Ca²⁺分别是输入量最大的阴、阳离子,年输入量分别达到 46.9 kg hm⁻² a⁻¹和 73.8 kg hm⁻² a⁻¹,K⁺ 的年输入量也较大,达到了 69.4 kg hm⁻² a⁻¹。除无机氮(NO₃⁻-N + NH₄⁺-N)和 Na⁺外,其他元素离子的淋溶量均为正值,其中 K⁺的淋溶量最大,达到 55.8 kg hm⁻² a⁻¹,其次为 SO₄²⁻-S(19.3 kg hm⁻² a⁻¹)、Ca²⁺(9.6 kg hm⁻² a⁻¹)、Mg²⁺(5.5 kg hm⁻² a⁻¹)和 Cl⁻(3.2 kg hm⁻² a⁻¹),分别占输入总量的 80.4%、41.2%、13.0%、45.3%和 18.9%。

图 6 树干流中主要阴阳离子浓度的动态 Fig.6 Temporal fluctuations of concentration of elements in stemflow

由表 1 还可以看出,除了无机氮($NO_3^-N + NH_4^+-N$)和 K⁺,其他离子在整个降水通量中均表现为负积累。 其中 Cl⁻的流失量最大,净输出量达 179.8 kg hm⁻² a⁻¹左右,而无机氮养分净累积量为 10.9 kg hm⁻² a⁻¹,K⁺的净 输入量达 56.4 kg hm⁻² a⁻¹。

4 讨论

4.1 降水分配特征

大气降水(林外雨)是森林生态系统主要养分元素的输入途径之一。大气降水进入森林后经过林冠截 留、吸收和淋溶,随穿透雨和树干茎流进入土壤,并以地表径流和地下渗漏等形式输出系统,期间降水的物质 含量发生了一系列复杂的变化^[17]。

大气降水进入林冠后,首先被林冠截留,可以削弱雨滴对地表的冲击,减少降水对地表的侵蚀;同时也减少了地表径流量,起到削减洪峰流量和涵养水源的功效,并能有效减少养分流失^[4]。本研究发现,在13年生的杨树人工林中林冠截留量为177.2 mm,截留率为15.4%,这一结果与温远光和刘世荣^[18]报道的我国主要森

图 7 地农住加中土安时阳离丁水及时刻芯 Fig.7 Temporal fluctuations of concentration of elements in surface runoff

林生态系统林冠平均截留量(134.0—843.4 mm)、截留率(1.4%—36.5%)相符,但 Miralles 等^[19]通过卫星观察 数据分析的全球范围内的各森林生态系统的林冠截留率发现,阔叶常绿、阔叶落叶和针叶林的平均林冠截留 率分别为13%、19%和22%,杨树属于阔叶落叶树种,与 Miralles 等^[19]的研究结果相比,本研究地的杨树人工 林林冠截留率略低。影响林冠截留的因素很多,如降水量、降水强度、森林覆盖率、冠层结构等,不同地域、不 同树种的森林生态系统林冠截留量会出现一定范围的波动,但整体上林冠截留量一般随着林外雨量的增加而 增大,而林冠截留率随林外雨量的增加而减小^[20]。

树干茎流量占降雨总量的比例一般在 0—5%之间^[21]。本研究的杨树人工林年树干茎流量为 26.7 mm, 占林外雨量的 2.3%,这一结果高于 Tian 等^[15]在贵州喀斯特森林生态系统中的调查结果(0.5%),也高于黄采 艺^[20]在枫香人工林生态系统中的结果(1.9%)和 Meiresonne 等^[22]的调查结果(1%—2%),但明显低于周光益 等^[23]的热带山地雨林调查结果(7%)。树干茎流量的大小主要受林分特征的影响,与林木的树皮吸水性能、 分枝角度、树干直径、树皮粗糙度、干型以及林分密度有关^[21];此外,林外降水量对树干茎流量也有显著影响。 一般而言,树干茎流量随降水量的增大而增加,降水量较小时一般不会产生树干茎流^[4,20]。 林外雨经过冠层截留和树干茎流的再分配后,还会经过林下植被、地表凋落物和土壤的截留,最终以地表 径流和土壤渗漏的方式输出系统。Laclau 等^[24]认为,在地势平坦的林地中地表径流量较小,通过地表径流输 出的养分可忽略不计。但 Meiresonne 等^[22]在地势平坦的杨树人工林研究中发现年地表径流量可达到 56.4 mm 至 156.1 mm。本研究地较为平坦,年地表径流量达到了 169.6 mm。表明坡度虽然在很大程度上影响地 表径流量,但土壤的结构、质地和孔隙度与地表径流量也密切相关^[4,21]。

Table 1 Annual input, output and input-output budget of elements in a popular plantation												
降水量/mm	Cl-	NO_3^N	SO_4^{2-} -S	Na ⁺	NH_4^+ -N	K^+	Mg^{2+}	Ca ²⁺				
Water amount	kg hm ⁻² a ⁻¹											
1154.1	13.51	9.93	27.53	5.12	9.19	13.63	6.63	64.20				
950.2	15.64	7.09	43.22	4.07	6.51	63.31	11.35	70.83				
26.7	1.03	0.68	3.65	0.25	0.65	6.12	0.76	2.95				
	3.16	-2.16	19.33	-0.80	-2.02	55.80	5.48	9.58				
	16.67	7.77	46.86	4.32	7.16	69.43	12.11	73.78				
169.6	9.69	2.16	11.19	2.18	1.04	12.42	5.27	33.28				
59.4	186.78	0.72	76.52	20.17	0.14	0.63	17.49	89.80				
	196.47	2.87	87.71	22.35	1.18	13.05	22.76	123.09				
	-179.80	4.90	-40.85	-18.03	5.99	56.38	-10.65	-49.31				
	1 Annual in 降水量/mm Water amount 1154.1 950.2 26.7 169.6 59.4	Image: Annual input, output 隆水量/mm Cl ⁻ Water amount 1154.1 1154.1 13.51 950.2 15.64 26.7 1.03 3.16 16.67 169.6 9.69 59.4 186.78 196.47 -179.80	I Annual mput, ouput and mput-o 降水量/mm Cl ⁻ NO ₃ ⁻ -N 1154.1 13.51 9.93 950.2 15.64 7.09 26.7 1.03 0.68 3.16 -2.16 169.6 9.69 2.16 59.4 186.78 0.72 196.47 2.87 -179.80 4.90	Image: Animal mplit, output and input-output output 降水量/mm Cl ⁻ NO ₃ ⁻ -N SO ₄ ²⁻ -S 1154.1 13.51 9.93 27.53 950.2 15.64 7.09 43.22 26.7 1.03 0.68 3.65 3.16 -2.16 19.33 16.67 7.77 46.86 169.6 9.69 2.16 11.19 59.4 186.78 0.72 76.52 196.47 2.87 87.71 -179.80 4.90 -40.85	Image: part of the second	Image: part and input-output outget of elements in a population outget of elements in a p	Image: Second state Secon	P Annuar mput, output and input-output outget of elements in a popul planauon降水量/mm Water amountCl ⁻ NO ₃ ⁻ -N $SO_4^{2-}-S$ Na ⁺ NH ₄ ⁺ -NK ⁺ Mg ²⁺ 1154.113.519.9327.535.129.1913.636.63950.215.647.0943.224.076.5163.3111.3526.71.030.683.650.250.656.120.763.16-2.1619.33-0.80-2.0255.805.4816.677.7746.864.327.1669.4312.11169.69.692.1611.192.181.0412.425.2759.4186.780.7276.5220.170.140.6317.49196.472.8787.7122.351.1813.0522.76-179.804.90-40.85-18.035.9956.38-10.65				

表 1 杨树人工林各类降水中的主要离子年输入与输出量

淋溶量=林内雨+树干流-大气降水;输入总量=大气降水+淋溶量;输出总量=地表径流+土壤渗漏;*,为地下 50 cm 处的土壤渗漏,主要阴 阳离子年渗漏量为试验前期收集测定的养分容积加权平均浓度与年水分渗漏量的乘积

由于条件的限制,本次试验未能完整收集土壤水分渗漏量,基于水文学方法,本文的土壤水分渗漏量根据 蒸发散量进行推算。根据已有的气象资料,结合 Thornthwaite 的经验公式,估算出本试验地杨树人工林的年蒸 发散量为 750 mm 左右,占林外雨量的 65%左右,表明大量的降水以蒸发散的形式输出该系统;而土壤渗漏的 水量较少,为 59.4 mm,低于 Tian 等^[15]的贵州喀斯特森林生态系统调查结果(396 mm),这可能与降雨状况、 植被特性以及土壤性质不同有关。

4.2 降水化学成分特征

杨树人工林生态系统林外雨的年平均 pH 值为 7.3,经过冠层截留形成的林内雨 pH 值提高为 7.9,而树干 流 pH 值为 6.9,明显低于林外雨和林内雨。周光益等^[25]在海南岛尖峰岭热带山地雨林,黄采艺^[20]在枫香人 工林研究中均发现这一变化规律。林内雨 pH 值增加的原因可能是林外雨中的 H⁺与冠层植物组织中细胞液 中的盐基阳离子发生离子交换^[26-27];而树干流在流动过程中会溶入树体分泌的有机酸或无机酸等,进而降低 树干流 pH 值^[7,20,25]。

林外雨、林内雨和树干流中的阴离子以 SO₄²⁻-S 为主,阳离子以 Ca²⁺为主,二者分别占总阴阳离子浓度的 60%以上。除 Na⁺,NH₄⁺-N 和 NO₃⁻-N 外,林内雨其他离子的年加权平均浓度是林外雨的 1.3—5.6 倍;树干流中 各离子的浓度也明显高于林外雨,其中 K⁺是林外雨的 20 倍左右,其他离子是林外雨的 2—6 倍;树干流离子 浓度是林内雨的 1.5—3.5 倍。

降雨经过冠层截留可以淋溶叶面和枝条上的尘埃、盐分、有机物等沉积物,同时可以溶解植物细胞的分泌物,故林内雨的养分量往往高于林外雨^[28]。冯宗炜等^[27]也认为,林内雨营养元素含量的增加主要是来自于细胞壁的蒸腾液,细胞原生质只是选择性地从液流中吸取了所需要的营养元素,其余的营养物质聚集在细胞壁和角质层内,当降水时这些营养物质就会被氢离子交换出来,进而提高林内雨的相关离子浓度。此外,林冠截留使一部分大气降水直接从冠层蒸发,减少了林内雨降水量,相对地增加了林内雨的离子浓度^[7]。林内雨

中的无机氮浓度低于大气降水的主要原因可能是因为无机氮被林冠叶面吸收和吸附所致[28]。

与林内雨相比,树干流的离子浓度更高,主要是因为降水经过冠层截留后一部分沿树干流动,进一步冲洗 树干上的沉积物,且树皮粗糙开裂,比表面积大,既增加了离子交换的面积,又延长了降雨对树干表面沉积物 的冲刷和淋溶时间,导致树干流中离子浓度明显高于林外雨和林内雨^[7]。另外,研究结果表明,各类降水中 离子浓度在降水量大的月份较小,反之,在降水量小的月份离子浓度较大,这主要是由于降雨量较少时,干沉 降时间长,降雨对林冠层及树干物质的冲刷作用明显,而随着降雨的增加,降水对雨中养分元素以稀释作用 为主。

4.3 养分输入与输出

与凋落物分解、土壤有机质矿化等相比,通过降水输入到森林生态系统的养分由于大多是水溶性的,易被 植物直接吸收,因此,大气降水及其淋溶作用对人工林生态系统养分循环而言具有重要作用。林内雨是养分 输入的主要形式,本研究表明林内雨的养分输入量占降水过程总养分输入量的90%以上;当然,虽然树干流 输入的养分总量相对较小,但树干流的养分浓度较高,并且能直接到达林木根部,对其生长以及根际土壤的理 化性质具有重要影响^[7]。

研究表明林外雨的 Na⁺、NH⁺₄-N 和 NO⁻₃-N 年输入量均明显高于林内雨和树干流,其他离子则相反,表明 Na 和无机 N 的输入以林外雨为主,而其他离子的输入以林内雨和树干流为主。这一结果与甘建民等^[29]在云 南哀牢山地区的研究以及 Meiresonne 等^[22]在意大利杨树人工林中的研究一致。

降水输入的养分离子以 SO₄²⁻-S、Ca²⁺和 K⁺为主,三者分别占离子输入总量的 20%、29%和 31%,同时这三 种离子也是随地表径流输出量最大的养分离子。对于大部分人工林生态系统而言,氮通常是匮乏的养分元 素。在本研究中发现,通过林内雨和树干流输入到杨树人工林生态系统中的无机氮养分总量为 15.0 kg hm⁻² a⁻¹,明显高于 Hamdan 和 Schmidt^[26]在加拿大研究的大叶槭(*Acer macrophyllum*)(4.0 kg hm⁻² a⁻¹)和道格拉斯 杉(*Pseudotsuga menziesii*)(3.1 kg hm⁻² a⁻¹)林分,也高于喀斯特地区森林(8.1 kg hm⁻² a⁻¹)^[15],但低于意大利 杨树人工林(19.2 kg hm⁻² a⁻¹)^[22]。

本研究表明,杨树人工林通过地表径流和土壤水分渗漏输出的无机氮量为4.05 kg hm⁻² a⁻¹,少于降水输入量,所以无机氮呈现出净积累状态。有研究者认为土壤水分渗漏导致的无机氮输出是森林生态系统氮损失的主要途径^[30-31],但也有研究者认为土壤水分渗漏导致的氮损失很少,可以忽略不计^[24,32-33]。笔者认为,这主要与土壤性质以及树种特性有关,对于渗透系数高、保水能力低的土壤来说,容易产生土壤水分渗漏和氮损失;对土壤比较黏重、渗透系数低、树木根系发达、养分吸收量大的本研究地杨树人工林而言,通过水分渗漏而形成的无机氮(NH⁴₄-N 与 NO³₃-N 之和)输出量只有 0.86 kg hm⁻² a⁻¹(表 1)。

研究地不同养分离子的输入与输出差异较大,总体而言,无机氮(NH₄⁺-N和NO₃⁻-N)和K⁺的输入大于输出,呈现出净积累状态(表1)。无机氮主要来源于大气降水,而K⁺主要来源于林内雨。其他养分离子表现为净损失,其中Cl⁻的净损失量最大,达179.8 kg hm⁻² a⁻¹,这可能因为Cl是一种惰性元素,不易被植被利用或被土壤颗粒吸附^[15],所以流出的量较大;与Cl⁻相比,SO₄²⁻-S、Na⁺、Mg²⁺和Ca²⁺的净输出量较小,均低于50 kg hm⁻² a⁻¹。

由于条件限制,本次试验未能完整收集土壤水分渗漏量,基于已有的水文学方法和相关研究,本文的土壤 水分渗漏量由模型估算的潜在蒸发散量推算而来,其离子含量是根据试验前期所测定的地下 50 cm 土层渗漏 水离子平均浓度以及估算的年水分渗漏量计算而来,所以土壤水分年渗漏量及其离子含量可能与实际情况存 在一定差异。此外,本文仅对南京地区的 13 年生杨树人工林降水特征进行了初步研究,其结果还存在较大的 局限性,今后有必要在更大的空间和时间范围内开展研究,以全面了解我国杨树人工林生态系统的水分特征 和离子特征,为杨树人工林可持续经营提供参考。

参考文献(References):

[1] 田大伦,项文化. 杉木人工林生态系统水文学过程的养分特性(英文). 生态学报, 2003, 23(7): 1369-1376.

[2]	巩合德 王开运	杨万勤	川西亚高山3种森林群落穿透雨和茎流养分特征研究 林业科学 2005 41	$(5) \cdot 14 - 20$
		• 10/J ED.		(J): 1 = 20

- [3] Kimmins J P. Forest Ecology. New York: Macmillan Publishing Company, 1987.
- [4] 李勇, 葛晓敏, 唐罗忠, 王瑞华. 森林不同组分对降水的生态效应研究进展. 世界林业研究, 2015, 28(2): 19-24.
- [5] Silva I C, Rodríguez H G. Interception loss, throughfall and stemflow chemistry in pine and oak forests in northeastern Mexico. Tree Physiology, 2001, 21(12/13): 1009-1013.
- [6] 陈书军,田大伦,闫文德,康文星.樟树人工林生态系统的水分生态效应.水土保持学报,2006,20(1):10-14.
- [7] 张娜, 刘兴诏, 李坤, 褚国伟, 闫俊华. 南亚热带三种主要森林降雨及其再分配过程中的养分差异规律. 生态学杂志, 2011, 30(2): 193-200.
- [8] Chuyong G B, Newbery D M, Songwe N C. Rainfall input, throughfall and stemflow of nutrients in a central African rain forest dominated by ectomycorrhizal trees. Biogeochemistry, 2004, 67(1): 73-91.
- [9] 李善文,张志毅,何承忠,安新民.中国杨树杂交育种研究进展.世界林业研究,2004,17(2):37-41.
- [10] 方升佐. 中国杨树人工林培育技术研究进展. 应用生态学报, 2008, 19(10): 2308-2316.
- [11] 谢宝东,方升佐,綦山丁,黄河,李华勇.南方山地立地条件对杨树人工林生长的影响.南京林业大学学报:自然科学版,2006,30(4): 55-58.
- [12] 王少元,何应同,曾祥福,郑红波,彭锦云.杨树不同土壤立地条件施肥效应的研究.林业科学,1999,35(S1):106-112.
- [13] Thornthwaite C W. An approach toward a rational classification of climate. Geographical Review, 1948, 38(1): 55-94.
- [14] 秦年秀,陈喜,薛显武,凌敏华,张志才.潜在蒸散发量计算公式在贵州省适用性分析.水科学进展,2010,21(3):357-363.
- [15] Tian Y, Haibara K, Chang S X, Toda H, Fang S Z. Acid deposition strongly influenced element fluxes in a forested karst watershed in the upper Yangtze River region, China. Forest Ecology and Management, 2013, 310: 27-36.
- [16] 卢晓强,丁访军,方升佐,户田浩人,生原喜久雄,魏鲁明.贵州省喀斯特地区原始林水化学特征.生态学报,2010,30(20):5448-5455.
- [17] 曹建华,李小波,赵春梅,蒋菊生,谢贵水.森林生态系统养分循环研究进展.热带农业科学,2007,27(6):68-79.
- [18] 温远光,刘世荣. 我国主要森林生态系统类型降水截留规律的数量分析. 林业科学, 1995, 31(4): 289-298.
- [19] Miralles D G, Gash J H, Holmes T R H, de Jeu R A M, Dolman A J. Global canopy interception from satellite observations. Journal of Geophysical Research: Atmospheres, 2010, 115(D16): D16122, doi: 10.1029/2009JD013530.
- [20] 黄采艺. 枫香人工林生态系统水文过程及主要营养元素动态特征[D]. 长沙: 中南林业科技大学, 2013.
- [21] 鲍文,包维楷,何丙辉,丁德蓉.森林生态系统对降水的分配与拦截效应.山地学报,2004,22(4):483-491.
- [22] Meiresonne L, De Schrijver A, De Vos B. Nutrient cycling in a poplar plantation (*Populus trichocarpa* × *Populus deltoides* 'Beaupré') on former agricultural land in northern Belgium. Canadian Journal of Forest Research, 2007, 37(1): 141-155.
- [23] 周光益,陈步峰,曾庆波,吴仲民,黄全,李意德.海南岛热带山地雨林短期水量平衡及主要养分的地球化学循环研究.生态学报, 1996,16(1):28-32.
- [24] Laclau J P, Ranger J, de Moraes Gonçalves J L, Maquère V, Krusche A V, M'Bou A T, Nouvellon Y, Saint-André L, Bouillet J P, de Cassia Piccolo M, Deleporte P. Biogeochemical cycles of nutrients in tropical *Eucalyptus* plantations: main features shown by intensive monitoring in Congo and Brazil. Forest Ecology and Management, 2010, 259(9): 1771-1785.
- [25] 周光益,曾庆波,黄全,陈步峰,吴仲民,李意德,杜志鹄.热带山地雨林林冠对降雨的影响分析.植物生态学报,1995,19(3): 201-207.
- [26] Hamdan K, Schmidt M. The influence of bigleaf maple on chemical properties of throughfall, stemflow, and forest floor in coniferous forest in the Pacific Northwest. Canadian Journal of Forest Research, 2012, 42(5): 868-878.
- [27] 冯宗炜,陈楚莹,王开平,张家武,曾士余,赵吉录,邓仕坚.亚热带杉木纯林生态系统中营养元素的积累、分配和循环的研究.植物生态学与地植物学丛刊,1985,9(4):245-256.
- [28] 马雪华. 降雨在杉木和马尾松人工林养分循环中的作用. 林业科学研究, 1988, 1(2): 123-131.
- [29] 甘健民, 薛敬意, 赵恒康. 云南哀牢山大气降雨过程中养分输入及输出变化的初步研究. 自然资源学报, 1995, 10(1): 43-50.
- [30] Adams P W, Boyle J R. Effects of fire on soil nutrients in clearcut and whole-tree harvest sites in central Michigan. Soil Science Society of America Journal, 1980, 44(4): 847-850.
- [31] Piirainen S, Finér L, Mannerkoski H, Starr M. Effects of forest clear-cutting on the carbon and nitrogen fluxes through podzolic soil horizons. Plant and Soil, 2002, 239(2): 301-311.
- [32] Weston C J, Attiwill P M. Clearfelling and burning effects on nitrogen mineralization and leaching in soils of old-age *Eucalyptus regnans* forests. Forest Ecology and Management, 1996, 89(1/3): 13-24.
- [33] Ranger J, Marques R, Colin-Belgrand M, Flammang N, Gelhaye D. The dynamics of biomass and nutrient accumulation in a Douglas-fir (*Pseudotsuga menziesii* Franco) stand studied using a chronosequence approach. Forest Ecology and Management, 1995, 72(2/3): 167-183.