DOI: 10.5846/stxb201605220981

刘菁华,李伟峰,周伟奇,韩立建,钱雨果,郑晓欣.京津冀城市群景观格局变化机制与预测.生态学报,2017,37(16):5324-5333. Liu J H, Li W F, Zhou W Q, Han L J, Qian Y G, Zheng X X.Simulation and prediction of changes in the landscape patterns of the Beijing-Tianjin-Hebei Metropolitan Region and their driving mechanisms. Acta Ecologica Sinica, 2017, 37(16):5324-5333.

京津冀城市群景观格局变化机制与预测

刘菁华^{1,2},李伟峰^{1,*},周伟奇¹,韩立建¹,钱雨果¹,郑晓欣¹ 1城市与区域生态国家重点实验室,中国科学院生态环境研究中心,北京 100085 2中国科学院大学,北京 100049

摘要:"城市群"是我国新型城镇化的主体形态,对推进国民经济发展具有重大意义,但其聚集连片的快速扩张模式对资源环境 的压力持续增加,已经成为制约未来可持续的瓶颈。以我国经济发展最为活跃,但生态环境问题十分突出的京津冀城市群为 例,基于 CLUE-S 模型,模拟分析了 1990—2010 年京津冀城市群景观格局的变化特征及其驱动机制,并预测了未来景观格局的 变化趋势。结果表明,(1)1990—2010 年京津冀城市群景观格局变化显著。其中,人工表面持续增加,耕地明显下降,林地和草 地格局的变化也存在明显的时序差异;(2)京津冀城市群景观格局的变化主要受自然和社会经济要素的综合影响,且不同景观 类型之间的驱动机制存在明显差异。其中,林地更易在地势较高、坡度较大的西部地区分布,而河流、人工表面等更易在平坦低 洼的区域分布;此外,不同景观类型变化的驱动机制存在显著的时序差异,例如,人工表面受地形的影响程度逐步降低,呈现更 加离散的分布,且其分布特征由较早时期的向市中心集聚分布发展为逐渐远离市中心并向铁路、高速路周边集聚的趋势;(3) 经检验,CLUE-S 模型能够较好地动态模拟京津冀城市群的土地覆盖格局的变化特征,模型的 Kappa 指数达 0.84。模拟预测结 果显示,未来(2020年)景观格局演变的显著特征是人工表面将持续增加,耕地将继续显著减少。北京、天津、唐山和石家庄等 核心城市的景观格局变化将最为显著。

关键词:京津冀城市群;CLUE-S模型;景观格局;驱动机制

Simulation and prediction of changes in the landscape patterns of the Beijing-Tianjin-Hebei Metropolitan Region and their driving mechanisms

LIU Jinghua^{1,2}, LI Weifeng^{1,*}, ZHOU Weiqi¹, HAN Lijian¹, QIAN Yuguo¹, ZHENG Xiaoxin¹

State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: Urban agglomeration is the major form of China's new urbanization, which has greatly advanced national economic development. However, rapid regional urbanization has posed serious pressures on ecosystems, and it restricts the sustainable development of cities. We studied the Beijing-Tianjin-Hebei Metropolitan Region (BTH), which is undergoing rapid urbanization but is also facing many ecological environmental problems, as a case example to analyze the dynamics of landscape change and their driving factors during 1990—2010. To do this, we used the logistic model and simulated changes in land-cover by using the CLUE-S model. Then, we predicted the changing trends of the landscape patterns of BTH in 2020. The results were as follows: (1) there was a marked change in the landscape patterns of BTH during 1990—2010. The proportion of the artificial surface clearly continued to increase, whereas that of the cultivated land significantly decreased. The spatial configurations of forest land and grassland showed obvious temporal changes; (2) The major drivers

基金项目:国家自然科学基金重大项目(41590841);中国科学院前沿科学重点研究项目(QYZDB-SSW-DQC034);国家重点研发计划重点专项 (2016YFC0503004)

收稿日期:2016-05-22; 网络出版日期:2017-03-25

* 通讯作者 Corresponding author.E-mail: li.wf@ rcees.ac.cn

http://www.ecologica.cn

of land-cover changes of BTH included both topographic and social-economic factors. Moreover, for different landscape types, the driving dynamics varied. For instance, the forested lands were more likely to occur northeast of BTH at high elevation and steep slopes while the water body, artificial surface and other landscape types were more likely to occur in plains and low-lying areas. The driving forces of landscape change also changed temporally. An example of this is how the distribution of artificial surface changed from being close to the central area in 1990—2000 to being away from the center, thus closer to railways and highways; (3) The CLUE-S model was robust in its application for the simulations of land-use dynamic changes of BTH, and the kappa index was 0.84. By 2020, the artificial surface of BTH was predicted to increase whereas cultivated land would continue to decrease. The most stark changes in landscape patterns should occur in core cites such as Beijing, Tianjin, Tangshan, and Shijiazhuang.

Key Words: BTH; CLUE-S model; landscape pattern; driving mechanism

"城市群"通常是以一个或几个大城市为核心,与周边一系列不同规模的中小城市,通过空间上以及功能上的紧密联系与协作分工,形成的具有明确的发展定位和层次结构清晰的区域经济发展中心^[1]。城市群最初在发达国家中形成并发展起来,随着发展中国家城市化进程的快速推进,城市群已经成为推动发展中国家经济发展的核心动力^[1-4]。但是,随着城市群规模的不断发展,这种集中连片的城市发展模式对区域生态环境的叠加影响持续加大,城市群区域的生态环境问题越来越突出。例如,淡水资源严重短缺、地下水超采过量、土地开发与农田保护矛盾越来越尖锐、大气污染和水环境恶化等生态环境问题严重制约着京津冀地区的可持续发展^[5]。因此,深入解析城市群的发展模式及其驱动机制,科学地预测城市群未来的发展趋势,是合理规划城市群发展布局、优化城市群国土空间开发以及解析城市群生态环境问题产生根源的重要支撑,也是推进我国区域协同发展战略实施的关键环节。

城市群地区的景观格局演变过程与变化规律,以及未来的发展趋势受到越来越多的关注。通常,城市群 覆盖的空间范围广、人口稠密、人类活动密集,因此,城市群的景观格局与演变,及其驱动机制较单个城市复杂 很多。目前,国内外的相关研究主要集中在地学、社会-经济与景观生态学等领域。例如,从区位经济学角度, 一些研究分析了城市群的人口、经济、基础设施、政策以及文化生活等特征要素的时空格局与演变规律,并发 展了相关理论方法,例如,城市群的人口与产业布局与发展的点轴发展理论、核心-边缘理论、城市增长序贯模 型等^[6-13];从城市地学角度,一些研究探讨了城市群不同城市空间结构与社会、经济等职能的时空格局与相互 作用规律,并提出了相关理论方法,如城市空间相互作用理论、空间扩散理论,城市空间发展的引力模型、潜力 模型以及空间断裂点模型等^[14-15];从景观生态学角度,一些研究分析了城市群区域的景观类型、结构与格局, 及其时空变化特征与规律^[16-18]。综上所述,当前关于城市群的发展特征与驱动机制研究中,从区位经济、人 文地理或景观生态学等不同学科视角的研究较多,考虑多学科交叉的城市群时空格局演变与驱动机制的研究 较少。

目前,许多研究表明,模型是模拟与预测城市时空格局动态演变过程的有效方法,国内外很多学者通过构 建模型的方法对不同类型的城市扩张演变过程进行了模拟与预测。其中,比较成熟并被广泛应用的模型主要 有统计分析模型、系统模型、空间分析模型及综合模型^[19]。其中,统计分析模型易于结合遥感影像进行定量 化分析,但由于一些决策和社会经济因素难以实现空间化,使模型在空间分析上存在劣势;系统模型在处理多 要素的相互作用具有优势,但在空间要素的动态变化模拟方面存在不足;而空间分析模型,例如,元胞自动机 模型,适用于小空间尺度、目标要素的空间特征较为一致的城市,不适合大尺度且目标要素的时空分布特征复 杂的城市群区域;而近些年发展起来的综合模型,例如森林退化模型 DELTA、CLUE-S 模型等,综合了上面介 绍的几种模型的优势和特点,提高了针对大空间尺度以及不同目标要素的时空分布与变化特征的模拟效果, 弥补了单一模型的不足^[20]。

综上所述,本研究将针对城市群这一重要的区域城市化模式,以京津冀城市群为研究案例,应用 CLUE-S

模型,综合考虑社会、经济以及自然多要素的影响,系统模拟分析了京津冀城市群景观格局的动态演变过程与 驱动机制,在此基础上,预测了京津冀城市群未来景观格局的演变趋势,以期为京津冀城市群的协同发展规划 与管理提供科学依据。

1 研究方法

1.1 研究区域介绍

京津冀城市群地处环渤海核心地带,地势西北高、 东南低,区位优势明显。京津冀包括北京、天津两大直 辖市以及河北省的石家庄、唐山、保定、廊坊、张家口、承 德、秦皇岛、沧州、衡水、邢台与邯郸11个地级市(图 1)。截至2014年,作为我国最具影响力的城市群,京津 冀城市群土地面积仅占全国2.3%,而生产总值为6.65 万亿元,占全国10.5%,总人口占全国8.1%,其中,北京 和天津等中心城市的城镇化率分别高达86.4%和 82.3%,高于全国平均水平54.8%(数据来源:北京市统 计局)。虽然京津冀城市群的战略地位突出,但存在着 明显的区域内部发展不均衡问题,例如,河北的人均 GDP不足京津一半。随着京津冀地区快速城镇化的持 续推进,其区域景观格局也必然产生剧烈变化。

1.2 景观格局特征提取

京津冀城市群的景观类型主要包括林地、草地、水体、耕地、人工表面与未利用地六大类型。景观特征的提取主要基于 Landsat-5 TM 遥感影像,利用面向对象和回溯相结合的土地利用/覆被信息提取方法,获得了1990、2000、2010 年 3 期的土地利用/覆被分类图,并结合高分辨率遥感数据和野外实地调查数据对遥感解译

Fig.1 Location and range of the study areas

数据进行修正及验证,以保证分类精度^[21]。其中 1990 年遥感影像的总体解译精度是 87.67%,2000 年及 2010 年的总体解译精度均超过了 96%。

1.3 CLUE-S 模型介绍

1.3.1 CLUE-S 模型的概念及原理

CLUE-S(the Conversion of Land Use and its Effects at Small regional extent)模型是荷兰瓦赫宁根大学"土地利用变化与影响"研究小组在 CLUE 模型的基础上开发的^[22],如今已被国内外很多研究者采用^[23-27]。CLUE-S 模型的基本假设条件为,一个地区的土地覆被/利用变化受该地区土地利用需求驱动,且该地区的土地利用分布格局总是与土地需求与自然环境和社会经济因子处于动态平衡状态^[23]。在此假设的基础上,CLUE-S 模型依托于非空间的土地需求模块以及空间分配模块,运用系统论的方法处理不同土地覆盖类型之间的竞争关系,实现对不同土地利用变化的同步模拟^[28]。

1.3.2 基于 Logistic 回归的驱动力分析

Logistic 回归分析被广泛应用于土地覆盖格局变化的驱动机制研究,针对土地覆盖格局特征和各种驱动 因素,运用逐步 Logistic 回归筛选对土地覆被格局影响较为显著的因子,剔除影响不显著的因子,从而估计式 (1)中的系数β,获得不同驱动因素与土地覆盖类型分布的关系。

$$\log\left(\frac{P_{i}}{1-P_{i}}\right) = \beta_{0} + \beta_{1} X_{1,i} + \beta_{2} X_{2,i} \cdots + \beta_{n} X_{n,i}$$
(1)

http://www.ecologica.cn

式中, P_i 表示区域单元内土地类型 i 可能出现的概率; $X_{k,i}$ 表示与土地类型 i 产生概率有关的特征变量,即影 响该土地类型演变的驱动因素; $\beta_{k,i}$ 是它们对应的系数,表现为当其他因素不变时,特征 $X_{k,i}$ 增加一个单位所 带来的 P_i 的变化; β_0 是常数项。

综合现有的城市化地区土地覆盖变化驱动机制研究^[29-31],城市土地覆盖格局变化主要受自然和人类活 动的双重影响。本研究通过融合多源数据,基于文献调研和京津冀城镇化现状,考虑了多重变量的共线性,筛 选了高程、坡度,以及到河流、海岸线的距离作为影响土地覆被格局变化的自然驱动要素;还选取了到铁路、国 道、高速路、市中心距离这些与城镇化紧密相关的可达性要素,人口、产业比重等社会经济要素,以及采用灯光 指数作为空间上直接反映人类社会、经济活动强度及范围的驱动因子(表1)。

数据来源:高程和坡度通过 DEM 数据转换;距离因 子通过 ArcGIS 计算空间各点到特定矢量距离;城镇人 口比重等社会经济指标来源于中国城市统计年鉴 (1990-2011): DMSP/OLS 夜间灯光数据为大尺度的 城市化研究提供了一种新的数据手段,已有研究表明灯 光强度/面积数据分别于人口密度、GDP 有高度相关 性,故研究尝试采用灯光指数来表征城市化水平对景观 格局的影响[32]。结合模型运算能力和熵理论将所有数 据统一为 600m×600m 分辨率的栅格数据。

2.3.3 模型模拟精度验证

CLUE-S 模型的精度校验分为两个部分。一个是应 用 ROC (Relative Operating Characteristic) 值对 Logistic 回归结果中驱动因素的解释能力进行校验,来定量衡量 模型模拟效果^[33]。ROC 值越高, Logistic 回归方程对土 地利用分布格局的解释能力越强,通常 ROC 值在 0.7 以上,就说明 Logistic 方程的判别能力较好,可利用 CLUE-S模型继续空间分配。空间模拟之后,可通过 Kappa 指数评价模拟精度^[34]。

去除共线性后的驱动因子汇总

Table 1 Driving factors after	removing the collinearity
指标类型	变量名称
Factors type	Variable name
生物物理因素	高程/m
Biophysical factors	坡度/°
	到河流距离/km
	到海岸线距离/km
社会经济因素	到铁路距离/km
Social-economic factors	到国道距离/km
	到高速路距离/km
	到市中心距离/km
	总人口/人
	城镇人口比重/%
	二产比重/%
	三产比重/%
	灯光强度指数
	灯光面积指数

研究结果与讨论

2.1 京津冀城市群景观格局动态变化特征

1990—2010年,京津冀城市群景观类型组成具有明显的时空变化特征(表 2)。

		衣 4	光俗向组成符征(19	90—2010)		
	Tal	ble 2 Landscape c	compositions of BTI	H (1990—2010)		
土地利田米刑	19	990	20	000	2	010
上地村/1天至 — Land use types	面积/km ²	比例/%	面积/km ²	比例/%	面积/km ²	比例/%
	Area	Proportion	Area	Proportion	Area	Proportion
林地 Forest	71157.96	33.20	69454.08	32.40	71136.36	33.19
草地 Grassland	16420.68	7.66	19376.28	9.04	19779.48	9.23
水体 Water	6648.84	3.10	6045.84	2.82	5673.24	2.65
耕地 Farmland	106875.00	49.86	101173.32	47.20	95844.96	44.71
人工表面 Artificial surface	12794.04	5.97	17703.72	8.26	21333.96	9.95
未利用地 Others	451.08	0.21	594.36	0.28	579.60	0.27

整体上,1990—2010年京津冀城市群的人工表面持续增长,20a内增加了66.75%;同时,耕地显著下降, 减少10.32%,耕地被侵占现象严重。此外,植被景观格局也存在明显的时空变化,例如,1990-2000年间草地 增长了 2955.60 km², 而 2000—2010 年的增幅相对缓慢; 1990—2000 年间林地面积减少 1703.88 km², 而 2000—2010年有所增加,京津冀的植被覆盖呈现由草地逐渐向林地过渡的特点。

2.2 京津冀城市群景观格局演变的驱动机制

Logistic 回归结果如表 3、表 4 所示。Logistic 回归结果的判别能力由 ROC 值进行检验。随着 ROC 值的增 加,Logistic 回归方程的解释能力逐渐上升。整体上看,Logistic 回归模型对整个京津冀城市群各土地覆盖类 型的分布解释能力较强, 六类土地覆盖的 ROC 值均超过 0.70, 说明 logistic 回归方程对各地类分布格局有较 好解释能力,其中,林地、水体及耕地的 ROC 值均在 0.90 左右,表明 Logistic 回归对这几种地类判别能力最 好,回归的结果可以较好地用于驱动机制分析研究以及未来对土地覆盖格局变化的模拟与预测当中。

Table 3 Logistic	regression result	s of the distribut	on of land-use t	ypes in 1990—2	2000	
亚井田子	林地	草地	水体	耕地 🌑	人工表面	未利用地
Priving factors	Forest	Grassland	Water	Farmland	Artificial surface	Others
Driving factors	Exp(B)	Exp(B)	Exp(B)	Exp(B)	Exp(B)	Exp(B)
高程 Elevation	1.002	1.000	1.000	0.999	1.000	0.998
坡度 Slope	1.329	0.967	0.700	0.737	0.747	0.854
到市中心距离 Distance to city centers	1.000	1.000	1.000		1.000	1.000
到铁路距离 Distance to railway	0.981	0.994	1.006	1.010		
到河流距离 Distance to river	1.000	1.000	1.000	1.000	1.000	
到海岸线距离 Distance to coastline	1.003	1.010	0.990	1.000	0.994	1.011
到国道距离 Distance to national highway	1.009	1.011	1.021	0.987		1.017
到高速路距离 Distance to expressway	0.994	1.003	0.995	1.003		1.014
总人口 Total population	0.999	1.000	1.000	1.000	1.001	
城镇人口比重 Urbanization rate of residents	1.030	1.082	1.054	0.977	1.005	1.161
二产比重 The proportion of second industry	0.859	0.909	0.957	1.081		0.758
三产比重 The proportion of tertiary industry	0.989	0.833	0.909	1.013	1.007	
灯光强度指数 Light intensity index	0.279	1.464	2.137	2.353		
灯光面积指数 Light area index	0.377	0.426	0.585	1.806	1.632	0.827
ROC 值 Receiver operating characteristic value	0.945	0.784	0.88	0.905	0.838	0.821

表 3	1990—2000 冬土地覆美米型的 logistic 逐步回归结里
AX J	1990—2000 省土地復益关金的 logisuc 逐少凹归纪术

2000--2010 各土地覆盖类型的 logistic 逐步回归结果

Table 4 Logist	ic regression res	suits of the distric	oution of land-us	se types in 2000	-2010	
	林地	草地	水体	耕地	人工表面	未利用地
驱动因子 Driving factors	Forest	Grassland	Water	Farmland	Artificial surface	Others
Driving factors	Exp(B)	Exp(B)	Exp(B)	Exp(B)	Exp(B)	Exp(B)
高程 Elevation	1.001	0.999	0.998	1.000	1.000	0.999
坡度 Slope	1.328	0.944	0.609	0.739	0.840	0.861
到市中心距离 Distance to city centers	1.003	0.999	1.012	0.997	1.003	1.024
到铁路距离 Distance to railway	0.986	0.996		1.011	0.998	0.992
到河流距离 Distance to river	1.005	0.996	1.013	0.995		1.007
到海岸线距离 Distance to coastline	0.997	1.009	0.992	1.002	1.001	1.007
到国道距离 Distance to national highway		1.022	1.027	0.986		1.025
到高速路距离 Distance to expressway	1.010	0.993	1.009	0.995	0.998	
总人口 Total population	0.999	0.999	1.000	1.000	1.000	0.999
城镇人口比重 Urbanization rate of residents	0.025	0.008	0.072	0.005	0.008	0.013
二产比重 The proportion of second industry	0.921	0.870	1.124		0.961	
三产比重 The proportion of tertiary industry	0.990	0.972	1.089	0.985	0.970	
灯光强度指数 Light intensity index	0.165		0.481	0.164	42.563	18.319
灯光面积指数 Light area index	0.396	0.599	0.393	3.489	2.593	0.389
ROC 值 Receiver operating characteristic value	0.937	0.797	0.898	0.900	0.856	0.827

2.2.1 京津冀城市群景观格局驱动机制的空间分异特征

从上述表中可以看出,不同时期影响京津冀城市群不同景观类型变化的驱动因子有显著差别。以 2000—2010 年各土地覆盖类型的 Logistic 逐步回归结果(表 4)为例。

自然影响因素方面,高程、坡度两个因子对京津冀六类土地覆盖类型的演变都影响最为显著。例如,对于林地,随着高程和坡度的增加,Exp(B)>1,林地分布概率增大,说明林地更易在相对陡峭的山地或高山分布,而与之相对的草地、水体、耕地、人工表面和未利用地都更易在平坦、地势较低的位置分布,几种地类中水体受坡度影响最大,坡度每降低1°,水体的分布概率就增加10.80%。

社会经济影响要素方面,交通网络体系布局与距市中心距离对京津冀六类土地覆盖类型的演变都有不同 程度的影响。例如,林地在靠近铁路以及远离市中心和高速路的位置分布概率增加;草地更倾向于在靠近市 中心、铁路和高速路以及远离国道的位置分布;水体分布更易远离市中心、国道和高速路;耕地在靠近市中心、 国道和高速路,且远离铁路的位置有分布概率增加的趋势;人工表面在靠近铁路和高速路以及远离市中心的 位置分布概率提高。此外,城市总人口数量与除人工表面之外的其他地类均呈现负相关,且结合灯光指数可 以看出人工表面的分布概率与人类活动呈现正相关,而其他地类受人类活动影响多呈负相关,揭示了京津冀 人类活动的增加对自然与半自然景观格局的变化干扰很大。

2.2.2 京津冀城市群景观格局驱动机制的时序变化特征

对于不同阶段,土地覆盖格局变化的驱动机制有所差异。其中,林地、草地、耕地以及人工表面这4类土地覆盖格局变化的驱动机制的时序差异最为明显。

首先,林地、草地作为与生态保护紧密相关的土地覆盖类型,其驱动机制在不同阶段有明显分异。自然影响要素方面,对于 1990—2000 年和 2000—2010 年两个不同阶段,到海岸线距离对林地分布概率的影响有所变化,距离海岸线距离越远,林地分布概率由 1990—2000 年的逐渐增加到 2000—2010 年的逐渐减小。道路交通体系方面,1990—2000 年林地在远离国道、靠近高速路的位置分布概率增加,而草地在远离高速路的位置分布概率增加;2000—2010 年林地在远离高速路距离的位置分布概率增加,草地在靠近高速路的位置分布概率增加。另一方面,草地由随着城镇人口比重分布概率增加(1990—2000 年)到随之下降(2000—2010 年),也表明草地慢慢向人类活动较小、城市化欠发达地区转移。

其次,作为国民经济的基础,耕地的分布概率在不同阶段的驱动机制也有所变化。自然影响要素方面, 1990—2000年和2000—2010年两阶段,高程每增加100m,耕地分布概率分别减小3.59%和0.25%,揭示了耕 地受地势影响程度降低的趋势。道路交通体系对耕地的影响主要表现在随时间逐渐由远离高速路向靠近高 速路分布。三产比重对耕地分布概率的影响由正转负,也表明了产业结构转型对于耕地的抑制作用随时间的 推移更加显著。

最后,对于与城市化密切相关的人工表面而言,自然和社会经济要素的影响具有更为明显的时序差异。 自然影响要素方面,高程和坡度对人工表面分布概率的影响程度随时间逐渐降低。1990—2000 年和 2000— 2010 年两阶段,高程每增加 100 m,人工表面分布概率减小 1.20%和 0.60%;坡度每增加 1°,人工表面分布概 率分别减小 6.95%和 4.29%,这可能说明早期人工表面更易在平坦、地势较低的位置分布,而随着经济发展、 时间推移,平地上逐渐达到饱和,人工表面未来有向高地、坡地演进的趋势。另一方面,人工表面的分布概率 由靠近海岸线逐渐增加到减小,也体现了城市发展向内陆转移的趋势。人为要素方面,道路交通体系对人工 表面的影响有明显的时序差异,具体表现在 2000—2010 年人工表面分布更易受道路影响,靠近高速路和铁路 分布概率显著增加。再者,1990—2000 年,人工表面向市中心集聚,而 2000—2010 年,人工表面逐渐偏离市 中心,呈现空间上离散的扩张趋势,表明京津冀城市群逐渐实现由单核向多中心发展,有助于经济一体化的促 进。1990—2010 整个时间段人工表面的增加都与总人口呈现正相关,但 2000—2010 年阶段二产、三产比重 均与人工表面分布概率呈现负相关,这说明京津冀地区已进入新的发展阶段,经济及人工表面的发展方式更 集约,经济增长对人工表面的驱动效应减小^[35]。

2.3 京津冀城市群景观格局变化趋势预测

2.3.1 模拟精度验证与预测

基于 CLUE-S 模型模拟的 2010 年京津冀土地覆盖/利用格局与 2010 年实际现状的对比分析表明,模型 模拟的 Kappa 系数为 0.84,通常 Kappa 系数的最低允许判别精度为 0.7^[36],说明应用 CLUE-S 模型对京津冀城 市群景观格局的动态模拟具有较好的模拟效果。

由于城市化区域的景观格局是在人类活动的影响下逐渐变化的,而人类的社会、经济活动,如人口和经济 增长等也是逐步变化的,因此,某一时段景观格局的变化机制与距其最近时段的景观格局变化机制关系最为 密切,故而假设 2010—2020 年期间影响土地利用格局的驱动要素与 2010 年相似,结合土地需求与各类景观 的历史转移规则,模拟预测了 2020 年京津冀城市群的景观格局分布特征(图 2)。

2.3.2 京津冀城市群土地覆盖格局的变化趋势

如表 5 所示,较 2010 年,京津冀城市群的林地、草地和人工表面都有一定程度的增加,其中人工表面增加 了 17.02%;水体、耕地和未利用地都有一定比例的减少,耕地退化依然严重;林地和草地继续增加,植被覆盖 的增加有助于京津冀城市群生态环境的改善,但耕地、水体的减少以及人工表面过快的增速对生态环境的影 响仍需引起重视。

	表 5 2010	0—2020年人工表面的	习数重变化	
	Table 5 The quantit	y change of artificial	surface in 2000—2010	
土地利用类型	2010 面积/km ²	2020 面积/km ²	变化面积/km ²	变化比例/%
Land use types	Area in 2010	Area in 2020	The area changed in 2010—2020	The change proportion
林地 Forest	71136.36	72819.72	1683.36	2.37%
草地 Grassland	19779.48	20184.12	404.64	2.05%
水体 Water	5673.24	5302.08	-371.16	-6.54%
耕地 Farmland	95844.96	90518.04	-5326.92	-5.56%
人工表面 Artificial surface	21333.96	24964.2	3630.24	17.02%
未利用地 Others	579.6	559.44	-20.16	-3.48%

从景观类型转换方式看,1990—2010年3个时期人工表面增长的主要来源于对耕地的侵占,其次是林地 与水体;减少的耕地主要转变为人工表面,其次是林地(表6)。从空间分布看(图3),人工表面的增长主要发 生在北京、天津,以及河北省主要城市如石家庄和唐山,不同城市的人工表面增长来源并不相同。例如,北京 2010—2020年增加的人工表面,71.3%来自于耕地,19.8%来源于林地;天津新增的人工表面 80.4%来自耕地, 14.6%来自水体;唐山新增的人工表面 85.4%由耕地转化,6.7%和 6.3%由林地和水体转换;石家庄的新增人 工表面有 81.0%来自于耕地,15.1%来源于林地。对比发现,经济相对发达的北京、天津、唐山等核心城市的人 工表面增加幅度大,而张家口、承德等欠发达地区,由于经济发展水平及地理位置的劣势,人工表面增加幅度 较缓。

Table o	The transformation source to	artificial surface in various perious	
新增人工表面来源		面积 Area/km ²	
The source of added artificial surface	1990—2000	2000—2010	2010—2020
林地 Forest	606.24	238.32	556.2
草地 Grassland	343.08	253.08	81.36
水体 Water	359.64	382.68	324.36
耕地 Farmland	7705.44	4839.12	2653.2
未利用地 Others	15.48	44.28	15.12

表 6 不同时期人工表面的转移来源

3 结论

本文应用 CLUE-S 模型,通过综合考虑自然、经济与社会等因子,模拟分析了京津冀城市群景观格局的时 空变化及其驱动机制,并对京津冀城市群未来景观格局的变化趋势做了模拟预测,主要结论如下:

(1)1990—2010年京津冀城市群景观格局变化显著。其中,人工表面的变化最为显著,增加了 66.75%, 耕地退化严重,林地和草地格局的变化存在明显的时序差异,京津冀城市群的植被覆盖呈现由草地逐渐向林 地过渡的趋势。

(2)1990—2010年京津冀城市群景观格局的演变主要受自然和社会经济要素的综合影响。但是,不同景观类型变化的驱动机制存在明显差异,林地更易在地势较高、坡度较大的西部分布,而河流、人工表面等更易 在平坦低洼的位置分布;人工表面和人口呈现显著正相关。此外,不同时段的景观格局变化的驱动机制也有

Fig.3 The transformation location to artificial surface in various periods

差异,例如,人工表面受地形影响程度逐渐降低,且呈现了更加离散,从向市中心集聚到远离市中心并逐步向 铁路、高速路集聚的趋势。

(3) CLUE-S 模型可以较好地模拟和预测京津冀城市群景观格局变化的过程与趋势,模型模拟的 Kappa 系数达 0.84。京津冀城市群未来景观格局变化的显著特征为,人工表面将持续增加,耕地继续显著减少,植被 覆盖有所提升。北京、天津、唐山和石家庄等核心城市的景观格局变化相对较大,而张家口、承德等欠发达地 区,由于经济发展水平及地理位置的劣势,景观格局的变化相对较小。

(4)本文运用 CLUE-S 模型对京津冀城市群景观格局变化的模拟与预测结果具科学性,但也存在一定局限性。一方面受数据可获得性的影响,部分社会经济指标只到地市级,在一定程度上影响了模拟精度;另一方面,本文并未考虑政策要素对景观格局变化的影响。未来的研究可以采用情景分析或多目标优化的手段,从 多角度模拟政策要素对景观格局变化的影响,以期为优化京津冀未来城市发展格局及可持续发展提供理论依据。

参考文献(References):

- [1] 顾朝林. 城市群研究进展与展望. 地理研究, 2011, 30(5): 771-784.
- [2] 方创琳. 改革开放 30 年来中国的城市化与城镇发展. 经济地理, 2009, 29(1): 19-25.
- [3] 方创琳. 中国城市群形成发育的政策影响过程与实施效果评价. 地理科学, 2012, 32(3): 257-264.
- [4] 方创琳. 中国城市群研究取得的重要进展与未来发展方向. 地理学报, 2014, 69(8): 1130-1144.
- [5] 文魁,祝尔娟.京津冀蓝皮书:京津冀发展报告 (2013) [D\].北京:社会科学文献出版社, 2013.
- [6] Friedman J R. Urbanization, Planning, and National Development. London: SAGE Publication, 1973.
- [7] Friedman J R. Territory and Function: Evolution of Regional Planning. London: Edward Arnold, 1976.
- [8] KJ巴顿. 城市经济学:理论和政策. 北京: 商务印书馆, 1984.
- [9] Behrens K, Thisse J F. Regional economics: A new economic geography perspective. Regional Science and Urban Economics, 2007, 37(4): 457-465.
- [10] Tabuchi T, Thisse J F. A new economic geography model of central places. Journal of Urban Economics, 2011, 69(2): 240-252.

[11]	Tabuchi T. Historical trends of agglomeration to the capital region and new economic geography. Regional Science and Urban Economics, 2014, 44: 50-59.
[12]	张永红. 增长极理论与我国区域经济发展的三大阶段. 湖南工业大学学报(社会科学版). 2008, 13(6): 117-120.
[13]	盛科荣,孙威.基于理论模型与美国经验证据的城市增长序贯模式.地理学报,2013,68(12):1632-1642.
[14]	张伟,顾朝林,城市与区域规划模型系统,南京,东南大学出版社,2000.
[15]	目卫阳,王发曾,秦耀辰,城市空间相互作用理论模型的演讲与机理,地理科学研究讲展,2009,28(4)·511-518.
[16]	王文慧 刘纪沅 邵全琴 何剑锋 孙朝阳 田汉勤 班艺航 区域尺度城市增长时空动态模型及其应用 抛理学报 2011 66(2)
[10]	178-188
[17]	• AGL 部分
[18]	Wu W I Zhao S O. Zhu C. Jiang I J. A comparative study of urban expansion in Beijing. Tianiin and Shijiazhuang over the past three decades
[10]	I and scane and Urban Planning 2015 134, 93-106
[10]	悲彬 深語 土地利田亥统动太恋化描拟研究进展 地理利学进展 2010 20(0) 1060 1066
[17]	
[20]	7014 28(2). 3-12
[21]	应阳主云 工桥 郑化 관峰 房職 今国生态环境十年变化(2000—2010年)译咸调查评估 中国科学院院刊 2014 20(4), 462-466
[21]	Verburg P.H. Soenboer W. Valdkamp A. Limpiada R. Espaldon V. Mastura S.S.A. Modeling the spatial dynamics of perional land use, the
	CLUES model Environmental Management 2002 30(3), 301-405
[23]	北京 初日 - 100 -
[23]	Hu X C. Zhang X M. Zhang X O. Simulation of land-use scenarios for Baijing using CLUE S and Markov composite models. Chinase Coorraphical
[24]	Solution 2013 23(1) 02 100
[25]	Yu I V I Z X Song H M Vin H Lond Use Planning for Urban Spraul Based on the CUUE S Medel A Case Study of Cuangradau Chine
	Au E 1, E Z A, Song H M, Thi H. Land-Use Hamming for Orban Spraw based on the CLOE-5 model: A Case Study of Guangzhou, China.
[26]	Entropy, 2013, 13(9): 3490-3500. 2. (4): 2. (5): 3490-3500.
[20]	问止起,问小红,顾娟,几世,郭丽峰,天西皮,郭萍· 至于 GLUE-5 侠至前至小加攻工地型加工问力 审侠顶。 王志于派,2015, 55(5):
[27]	203-277.
[27]	钟云然,彻成风,本金干.北东市工地河南至西南海风铁线及顶侧.地建料子近成,2013,34(8):970-960. 工画摘
[20]	工酬電, 派子術, 派子, 工工, CLUE-5 侯至原達司石內及共应用近底, 地理司地建信息将子, 2010, $20(5)$; 75-77. 刘達 甫广中 城市田塘扩改及亚动力研究进展 塘田紀受进展 2010 20(8) 027 024
[29]	风闷,盲)心. 项巾用地扩张放社会人立政动机制 门上海市为例的党证研究 土太工程学报 2012 45(52) 206 210
[30]	在当日,工安武. 城市用地扩张的社会八天地动机的一一以上两中为两时关础前元.工作工程于很,2012,45(32):500-510.
[31]	钟云然,彻风风,不垂干,北东市土地河用文化特征汉范列机闸, 经价地建, 2013, 35(3): 146-134. 陈亚 卢茹 中拉宪 一之端始明 其王 DMSD/OLS 教提的中国城市化计程研究 — 反映区域城市化水平的灯来形物的构建 深感受极
[32]	所目, 平利, 文坛平, 一之裸夜明. 盔丁 bhist/OLS 奴据的平国城市化过程研究——及欧区域城市化水干的闪光组奴的构建. 遗念子取,
[22]	2005, 7(5): 106-175.
[33]	Arriculture Econstant & Environment 2001 85(1/3) 230 248
[24]	Agriculture, Ecosystems & Environment, 2001, 65(1/3): 237-246.
[34]	Fondus K G. Quantification error versus location error in comparison of categorical maps. Fnotogrammetric Engineering and Kemole Sensing, 2000,
[25]	20(8):1011-1010. 美海 曲道田 天园坐屋险段建设田塘扩改对经济增长的贡献与响应 中国人口,资源与环境 2000 10/1) 70 75
[35]	安海, 曲備田. 小門及陵阴权建议用地扩张对经济增长的贝歇马响应. 中国八口·贝尔马环境, 2009, 19(1): 70-73.
[30]	Van Janssen L L r. Accuracy assessment of satellite derived land-cover data: a review. Photogrammetric Engineering and Remote Sensing, 1994,
)	00(4): 419-420.
	7
7	