DOI: 10.5846/stxb201405301111

张怡, 吕世华, 马静, 徐华, 袁江, 董瑜皎.冬季水分管理和水稻覆膜栽培对川中丘陵地区冬水田 CH4排放的影响.生态学报,2016,36(4): Zhang Y, Lü S H, Ma J, Xu H, Yuan J, Dong Y J.Effects of water management in winter and of plastic film mulching during rice cultivation on CH4 emission from paddy field in a hilly region of Central Sichuan. Acta Ecologica Sinica, 2016, 36(4): -

冬季水分管理和水稻覆膜栽培对川中丘陵地区冬水田 CH₄排放的影响

怡^{1,3}, 吕世华², 马静¹, 徐华^{1,*}, 袁江², 董瑜皎² 张 1 土壤与农业可持续发展国家重点实验室 中国科学院南京土壤研究所,南京 210008 2四川省农业科学院土壤肥料研究所,成都 610066 3 江苏农药检定所,南京 210036

摘要:本研究采用静态箱-气相色谱法观测冬季水分管理和水稻覆膜栽培对川中丘陵地区冬水田全年的 CH₄排放通量。试验设 置持续淹水(CF)、冬季直接落干+稻季淹水(TF)与冬季覆膜落干+稻季覆膜(PM)3个处理。结果表明,冬季休闲期,CF、TF和 PM 处理 CH₄排放分别为 16.1 g/m²、1.4 g/m²和 2.7 g/m²;水稻生长期, CF、TF 和 PM 处理 CH₄排放分别为 57.7 g/m²、27.7 g/m² 和 13.5 g/m²。相较于 CF 处理, TF 与 PM 处理分别减少其全年 CH₄排放 60.6%和 78.0%。TF 与 PM 处理水稻生长期 CH₄排放 峰值分别较 CF 处理低 33.0%和 56.1%。休闲期, TF、PM 处理厢面与厢沟区域 CH_排放与土壤温度显著正相关(P<0.05), 与土 壤氧化还原电位(soil redox potential, 土壤 Eh)显著负相关(P<0.05),而 CF 处理 CH₄ 排放仅与土壤温度显著正相关(P<0.05)。 水稻生长期,CF处理CH4排放与土壤温度显著正相关(P<0.05),与土壤Eh显著负相关(P<0.05),TF处理CH4排放仅与土壤 Eh显著负相关(P<0.05), PM处理厢沟CH4排放与土壤Eh显著正相关(P<0.05)。各处理水稻生长期土壤可溶性有机碳含量 (Dissolved Organic Carbon, DOC)与微生物生物量碳含量(Microbial Biomass Carbon, MBC)显著高于休闲期(P<0.05)。研究结 果为进一步研究冬水田全年 CH₄排放规律及寻求有效的减排措施提供数据支撑和科学依据。

关键词:冬水田(常年淹水的稻田);水分管理;覆膜栽培;CH₄排放

Effects of water management in winter and of plastic film mulching during rice cultivation on CH₄ emission from paddy field in a hilly region of Central Sichuan

ZHANG Yi^{1, 3}, LÜ Shihua², MA Jing¹, XU Hua^{1,*}, YUAN Jiang², DONG Yujiao²

1 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

2 Institute of Soil Fertilizer, Sichuan Agriculture Sciences Academy, Chengdu 610066, China

3 Jiangsu Institute for the Control of Agrochemicals, Nanjing 210036, China

Abstract: Methane (CH_4) is one of the most important greenhouse gases and plays an important role in atmospheric chemistry. Rice fields have been identified as an important source of atmospheric CH_4 . Because permanently flooded paddy fields create the most favorable situation for CH_4 production and emit CH_4 all year round, they are thought to contribute the greatest amounts of CH₄. Draining the permanently flooded paddy fields in the fallow season is supposed to be a good option for mitigating CH₄ emission. However, those paddy fields distributed in the hilly area of southwest China face the problem of water shortage. This means that transplanting rice in the following year would be hindered, if the fields were drained in the

基金项目:国家自然科学基金(41271259);科技部国际科技合作项目(S2012GR0080);公益性行业(农业)科研专项(201103039);中国香港特 别行政区嘉道理农场暨植物园资助

收稿日期:2014-05-30; 网络出版日期:2015- -

* 通讯作者 Corresponding author.E-mail: hxu@issas.ac.cn

previous fallow season. In recent years, a new technology involving improved plastic film mulching for rice cultivation has been developed. It is an alternative to permanently flooded rice cultivation technology, which promises to save water, and in addition, would allow drainage in the fallow season without impeding the next rice transplanting session. The effects of water management in winter and of plastic film mulching during rice cultivation on CH₄ emission throughout the year were explored using winter paddy fields in the hilly region of Central Sichuan. A field experiment was carried out using the static chambergas chromatograph method to monitor CH_4 emissions in the paddy fields. Three treatments were designed: Treatment CF (continuous flooding all year round), Treatment TF (drained in winter and flooded during the rice growing season), and Treatment PM (drained and mulched in winter and mulched during the rice growing season). The results showed that methane emission for Treatments CF, TF, and PM was 16.1 g/m², 1.4 g/m², and 2.7 g/m², respectively, during the winter fallow season and 57.7 g/m², 27.7 g/m², and 13.5 g/m², respectively, during the rice-growing season. Compared with Treatment CF, Treatments TF and PM reduced the annual CH₄ emission by 60.6% and 78.0%, respectively, and lowered the CH_4 flux peak during the rice-growing season by 33.0% and 56.1%, respectively. During the fallow season, in Treatments TF and PM, CH_4 emission from ridge and ditch areas was significantly correlated with soil temperature (P < P0.05), but negatively with soil redox potential (soil Eh) (P < 0.05). However, CH₄ emission was positively correlated with soil temperature in Treatment CF (P < 0.05). During the rice-growing season, in Treatment CF, CH₄ emission was significantly and positively related to soil temperature (P < 0.05), and negatively to soil Eh (P < 0.05). In Treatment TF, CH_4 emission was only negatively related to soil Eh (P < 0.05), and in Treatment PM, CH_4 emission from the ditches was significantly and positively related to soil Eh (P < 0.05). The soil dissolved organic carbon (DOC) and soil microbial biomass carbon (MBC) contents were much higher during the rice-growing season than during the fallow season (P <0.05). The findings may provide important data and a scientific basis for further study of the process of CH₄ emission from permanently flooded paddy fields throughout a year and to explore effective mitigation options for CH₄ emission in more detail.

Key Words: winter flooded paddies; winter water management; plastic film mulching cultivation; CH₄ emission

 CH_4 是重要的温室气体,对温室效应的贡献达 15%^[1]。100 年时间尺度上,单位质量 CH_4 的增温潜势是 CO_2 的 28 倍^[2]。大气中 CH_4 浓度已由工业革命前的约 715 nL/L 增至 1803 nL/L ^[2]。稻田是大气 CH_4 的重要 排放源,其年排放量为 23 $Tg^{[3]}$ 。我国稻田每年向大气排放约 6.9 Tg CH_4 ,占全球稻田 CH_4 总排放的 6%— 22%^[4]。正确评估并设法减少稻田 CH_4 排放量对我国温室气体减排有重要意义。

冬水田是我国 CH₄排放量最大的一类稻田^[5],其面积仅占我国稻田总面积的 12%,但 CH₄排放却占我国稻田 CH₄排放的 45%^[6]。由于常年淹水,冬水田土壤维持在厌氧状态,其在全年均有相当数量的 CH₄排放^[7]。Cai 等^[7]研究发现,冬水田非水稻生长期 CH₄排放急量与水稻生长期相近。江长胜等^[8]对川中丘陵地区冬水田观测发现,非水稻生长期 CH₄排放量占全年排放总量的 23%。非水稻生长期持续淹水还大大增加后续稻季 CH₄排放量。研究表明^[9-10],持续淹水较排水落干增加后续水稻生长期 CH₄排放 20%—380%。由此,冬水田 拥有较大的 CH₄减排潜力。非水稻生长季节进行排水落干是冬水田 CH₄减排的有力的措施^[11]。据估算^[12],若将冬水田排水落干一次,则中国可减少 15.6% 的 CH₄排放。但在非水稻生长季节对全部的冬水田全部排 干是不现实的。有很大一部分冬水田在很大程度上依赖降雨灌溉,如果在非水稻生长期排水落干,万一遇到 春季降水不足,就有可能无法耕作和种植水稻。水稻覆膜栽培是以地膜覆盖为核心,以节水抗旱为主要目的 的新型栽培方式。它可以显著节约水稻生产用水,其全生育期用水量仅为传统栽培的 70%^[13]。因此,若采用 水稻覆膜栽培,即可在非水稻生长期对冬水田进行排水落干。目前,水稻覆膜栽培技术结合非水稻生长季节 水分管理对冬水田全年 CH₄排放的影响迄今未见报道。

本研究通过田间原位试验,研究非水稻生长期水分管理与水稻覆膜栽培对川中丘陵地区冬水田全年 CH₄的排放通量的影响,为进一步研究稻田 CH₄排放规律及寻求有效的减排措施提供数据支撑和科学依据。

1 材料与方法

1.1 试验设计

田间试验于 2012—2013 年在四川省资阳市雁江区雁江镇响水村(104°34′E,30°05′N)进行。该地区平 均气温 16.8 ℃,平均年降水量 965.8 mm。试验土壤为侏罗纪遂宁组母质发育红棕紫泥,土壤全碳含量为 34.0 g/kg,全 N 含量为 1.7 g/kg,土壤 pH 值为 8.2。

试验共设 3 个处理(表 1),4 次重复,试验小区面积为 20 m²(4 m×5 m),随机区组设计。2012 年水稻收 获后,小区内稻茬全部移除,PM 处理厢面薄膜并不立刻揭去,而是在来年翻耕泡田之前(4 月 20 日)揭除。 PM 处理试验小区设 4 条厢沟,3 条厢面。各厢沟长 4 m、宽 12.5 cm、深 15 cm;各厢面长 4 m、宽 1.5 m。3 处理 冬季休闲,稻季供试水稻品种为川香 8108,于 4 月 7 日育秧,5 月 10 日移栽,9 月 10 日收获。水稻均采用三角 稀植,即行窝距为 40 cm×40 cm,每窝以三角形方式栽 3 苗,苗间距 12 cm,移栽密度为 18 穴/m²。所有处理均 施用 600 kg/hm²的过磷酸钙、90 kg/hm²的氯化钾和 15 kg/hm²的一水合硫酸锌,作为基肥一次性施入。PM 处 理 5 月 9 日基肥施用后在厢面上均匀覆盖 0.004 mm 薄膜并平铺压实。

Table 1 Designing of the experiment						
栽培方式 Planting method	简称 abbreviation	冬季管理 Water management in winter	稻季管理 Management during rice-growing season			
			氮肥管理 N fertilizer management	水分管理 Water management		
冬水田平作 Winter flooded paddy fields	CF	持续淹水	尿素施用量为 150 kg N hm ⁻² ,按 1: 1 的比例于 5 月 9 日和 5 月 30 日 施用基肥与分蘖肥	持续淹水		
常规栽培 Traditional cultivation	TF	排水落干	尿素施用量为 150 kg N hm ⁻² ,按 1:1的比例于5月9日和5月30日 施用基肥与分蘖肥	持续淹水		
水稻覆膜节水高产栽培 Plastic film mulching cultivation	РМ	排水落干	尿素施用量为 150 kg N hm ⁻² ,5 月 9 日作基肥一次性施入,肥料均匀 施于厢面上	烤田期(6月28日-7月20日)排尽 厢沟水层,其余时间保持厢面无水 层,厢沟有水层。		

表1 试验处理描述

1.2 样品采集

CH₄样品用静态箱采集。为准确定量 PM 处理 CH₄排放,在试验小区内放置 2 种不同规格的静态箱,分别 用于测定厢面与厢沟区域 CH₄排放,箱 A 放置于厢面正上方,包括中段箱和顶箱 2 部分,高分别为 60 cm 和 70 cm,底面积均为 40 cm×40 cm,中段箱顶部设有密封用水槽,用于水稻生长后期加层。箱 B 放置于厢沟上方, 高为 70 cm,底面积为 40 cm×10 cm。CF 与 TF 处理的静态箱规格与 PM 处理箱 A 一致。非水稻生长期每隔 7d 采样一次,水稻生长期每隔 4—7 d 采样一次,采样时间为上午 8:00—12:00。采样时将静态箱罩在事先埋 入田里的不锈钢底座上(40 cm×40 cm×15 cm)。静态箱密封后用两通针将气体导入 18 mL 预先抽真空的玻 璃瓶中,每 15 min 采样 1 次,共采样 4 次。采集气样的同时,采用氧化还原电位仪测定 10 cm 处土壤 Eh、直尺 测定水层厚度、温度计测定箱内气温及 5 cm 处土温(厢沟区域并未观测 5 cm 处土温)。

分别于非水稻生长季(2012 年 10 月 26 日、2013 年 1 月 11 日、3 月 22 日)与水稻生长季 6 月 11 日(分蘖 期)、7 月 7 日(孕穗期)、7 月 27 日(灌浆期)、8 月 22 日(成熟期)按五点采样法采集表层 0—10 cm 土样(PM 处理仅采集厢面区域),土样采集后置于 4 ℃冰箱冷冻保存,在一周内完成测定。新鲜土样中的可溶性有机 碳(DOC)用 0.5 mol/L K₂SO₄提取,土水比 1:4,过 0.45 μm 滤膜,滤液用总有机碳分析仪(TOC 仪)测定;采用 氯仿熏素-K₂SO₄提取方法测定土样中微生物生物量碳(MBC)。用 0.5 mol/L K₂SO₄分别提取熏蒸前后提取新 鲜土样中总有机碳,土水比 1:4,采用总有机碳分析仪(TOC 仪)测定。以熏蒸土壤与不熏蒸土样提取的总有 机碳的差值乘以转换系数 K_e(2.63),计算土壤 MBC。水稻收获时,按试验小区分别收割、脱粒、晾晒、适当筛 除秕粒后称量,计算水稻产量。

1.3 样品分析

样品 CH₄浓度用带 FID 检测器的气相色谱(岛津 GC-12A)测定,柱温 80 ℃,检测器温度 200 ℃。氮气为载气,流速 40 mL/min;氢气为燃气,流速 35 mL/min;空气为助燃气,流速 350 mL/min。CH₄标准气体由中国 计量科学研究院提供。

1.4 计算方法

根据 CH₄浓度与时间关系曲线分别计算 CH₄排放通量。

CH₄排放通量计算公式如下^[11]:

 $F = \rho \times V/A \times dc/dt \times 273/T \tag{1}$

式中,F为 CH₄的排放通量(mg m⁻² h⁻¹); ρ 为标准状态下 CH₄密度(0.714 kg/m³);V为采样箱内有效体积 (m³);A为采样箱所覆盖的土壤面积(m²);dc/dt为单位时间内采样箱内 CH₄浓度变化($\mu L/(L h)$);T为采样 箱内温度(K)。

对于 PM 处理,通过箱 B 测得的气体排放通量(*F_B*)为厢沟气体排放通量,通过箱 A 测得的气体排放通量 (*F_A*)为厢面气体排放通量,PM 处理的气体排放通量为厢面及厢沟的气体排放通量与对应区域面积的加权平 均,即:

$$F_c = (F_A \times S_A + F_B \times S_B)/S$$
⁽²⁾

式中,S₄、S₈和S分别为试验小区内厢面区域、厢沟区域和小区面积。

CH₄排放通量用 4 个重复的每次观测平均值及标准偏差表示。CH₄的季节平均排放通量是将每次观测值 按时间间隔加权平均后再取 4 个重复的平均值。处理间比较以 4 个重复的平均值进行方差分析及多重比较。

2 结果与分析

2.1 不同管理方式下 CH₄ 排放特征

图 1 显示不同管理方式下休闲期与水稻生长期农田土壤 Eh、土壤温度及 CH₄排放通量的季节变化。休闲期内,CF 处理持续淹水,其季节平均土壤 Eh 为-214 mV;TF 处理排水落干,该期季节平均土壤 Eh 为 15 mV;而 PM 厢面与厢沟区域该期季节平均土壤 Eh 分别为-3 mV 和 7 mV。水稻生长期内,CF、TF 和 PM 厢面与厢沟区域季节平均土壤 Eh 分别为-274 mV、-241 mV、-181 mV 和-191 mV。全观测期内,各处理土壤温度变化趋势一致。CF、TF 及 PM 处理厢面区域土壤温度维持在 4.6—29.1 ℃之间(图 1),休闲期季节平均温度分别为 13.0 ℃、13.2 ℃和 13.4 ℃,水稻生长期季节平均温度分别为 25.0 ℃、25.0 ℃和 26.0 ℃。

土壤温度与土壤 Eh 是影响稻田 CH₄排放的关键因素。休闲期, CF 处理土壤 Eh 在适于 CH₄产生的范围 内变化,其 CH₄排放随土壤温度变化明显; TF 与 PM 处理厢面及厢沟 CH₄排放在土壤 Eh 与土壤温度共同作 用下逐渐降低至 0.0 mg m⁻² h⁻¹。值得注意的是,水稻种植前,气温回升, CF 处理 CH₄排放随土壤温度上升而 升高,峰值达 11.5 mg m⁻² h⁻¹, 而此时 TF 及 PM 处理厢面及厢沟区域土壤 Eh 不利于 CH₄产生(大于-200 mV),所以均未观测到 CH₄排放。水稻移栽后, CF 处理随即出现明显的 CH₄排放(4.3 mg m⁻² h⁻¹),并随着土 壤温度升高迅速上升,而 TF、PM 处理厢面区域在水稻移栽后 20 天后,才观测到一定数量的 CH₄排放(0.3— 0.5 mg m⁻² h⁻¹),且其上升趋势较为缓慢。CF、TF 及 PM 处理厢面区域在水稻孕穗期出现 CH₄排放峰值, TF 及 PM 处理厢面区域 CH₄排放峰值较 CF 处理低 33.0%—56.1%。PM 厢沟区域只在烤田期水层排尽时才有微 弱的 CH₄排放(0.3—0.9 mg m⁻² h⁻¹)。

图1 稻田土壤 Eh、土壤温度及 CH₄排放通量的季节变化

CF—持续淹水 continuous flooding, TF—冬季直接落干+稻季淹水 traditional flooding, PM 厢面—冬季覆膜落干+稻季覆膜厢面 ridge area in plastic film mulching, PM 厢沟—冬季覆膜落干+稻季覆膜厢沟 ditch area in plastic film mulching。

如表 2 所示,休闲期 TF、PM 处理厢面与厢沟区域 CH₄排放与土壤温度显著正相关(P<0.05),与土壤 Eh 显著负相关,而 CF 处理 CH₄排放仅与土壤温度显著正相关(P<0.05),与土壤 Eh 无显著相关性(P>0.05)。 水稻生长期,CF、TF 处理 CH₄排放与土壤 Eh 显著负相关(P<0.05),而 PM 处理厢沟 CH₄排放与土壤 Eh 显著 正相关(P<0.05)。这可能是由于 CF 与 TF 处理存在有效的 CH₄传输途径(水稻植株),其土壤 Eh 越低,土壤 中生成的 CH₄越多并可有效排入大气;而 PM 处理厢沟区域有水层阻碍且无有效的 CH₄传输途径,仅在烤田 期水层消失时(土壤 Eh 上升),其闭蓄态的 CH₄才得以排放。

处理 - Treatment	Table 2 Rela 休闲其	tionships of CH ₄ fluxes with so 月 Fallow season	bil Eh and soil temperature 水稻生长期 rice-growing season		
	土壤 Eh Soil Eh	土壤温度 Soil temperature	土壤 Eh Soil temperture	土壤温度 Soil temperture	
CF	0.1	0.7 *	-0.5 *	0.6*	
TF	-0.7 *	0.6*	-0.5 *	0.1	
PM 厢面 Ridge area in PM	-0.9 *	0.6 *	0.3	0.3	
PM 厢沟 Ditch area in PM	-0.6 *	_	0.5 *	_	

上場 LII	和上坡血反力	Cn4种加速	里的伯大住刀彻
	上場正田	L垠 Lll 型上垵/皿反つ	上場 Ell 他上場/皿皮司 Ull4개/纵炮!

*表示存在显著性差异(P<0.05)。试验并未观测 PM 厢沟区域土壤温度,-表示无 PM 厢沟区域 CH4 排放与土壤温度的相关性数据。CF— 持续淹水 continuous flooding,TF—冬季直接落干+稻季淹水 traditional flooding,PM 厢面—冬季覆膜落干+稻季覆膜厢面 ridge area in plastic film mulching,PM 厢沟—冬季覆膜落干+稻季覆膜厢沟 ditch area in plastic film mulching。

2.2 冬季水分管理方式及覆膜栽培对冬水田 CH₄排放的影响

表 3 显示各处理休闲期与水稻生长期 CH₄平均排放用量与排放总量。稻田 CH₄排放主要集中在水稻生 长期内, CF、TF 及 PM 处理水稻生长期 CH₄排放量分别占全观测期内 CH₄排放量的 78.2%、95.2%和 83.3%, 虽 然休闲期 CF 处理 CH₄排放仅占全观测期内 CH₄排放量的 21.8%, 但其排放量已与 PM 处理全观测期 CH₄排放

36 卷

Table 3 Average flux and cumulative emission of CH_4 and rice yield in different treatments						
_	休闲期1	Fallow season	水稻生长期 rice-growing season			
处理 Treatment	平均排放通量 Mean flux/ (mg m ⁻² h ⁻¹)	排放量 Total emission/(g/m ²)	平均排放通量 Mean flux/ (mg m ⁻² h ⁻¹)	排放量 total emission /(g/m ²)	产量 yields/ (t/hm ²)	
CF	3.1±0.5a	16.1±2.8a	20.2±3.5a	57.7±9.9a	8.5±0.5a	
TF	$0.3 \pm 0.1 \mathrm{b}$	$1.4\pm0.2b$	$9.7 \pm 2.5 \mathrm{b}$	$27.7{\pm}7.2{\rm b}$	8.5±0.4a	
PM 厢面 Ridge area in PM	$0.5 \pm 0.3 \mathrm{b}$	$2.7 \pm 1.5 \mathrm{b}$	$6.0\pm2.0\mathrm{b}$	$17.2\pm5.8b$	-	
PM 厢沟 Ditch area in PM	$0.6 \pm 0.2 \mathrm{b}$	$3.0 \pm 1.0 \mathrm{b}$	0.1±0.1c	0.3 ± 0.3 c	-	
РМ	$0.5 \pm 0.1 \mathrm{b}$	$2.7 \pm 0.6 \mathrm{b}$	$4.7 \pm 1.6 \mathrm{b}$	$13.5 \pm 4.5 \mathrm{b}$	8.3±0.03a	

表 3 各处理 CH₄平均排放通量、排放总量及水稻产量 Table 3 Average flux and cumulative emission of CH, and rice yield in different treatment

不同小写字母表示同一列存在显著性差异(P<0.05)。

覆膜栽培分别减少 60.6% 和 78.0% 的 CH₄ 排放。

2.3 冬季水分管理方式及覆膜栽培对水稻产量的影响

表3显示各处理水稻产量。2013年水稻生长期,CF、TF 与 PM 处理水稻产量分别为8.5 t/hm²、8.5 t/ hm²、8.3 t/hm²,三者无显著性差异(P>0.05)。本试验中,PM 处理产量略低于 CF 处理,这是由于考察常年淹 水稻田 CH₄排放的试验需要,保证了 CF 与 TF 处理的水分灌溉。在四川地区的实际水稻生产中,有70%的冬 水田属于望天田^[14](雨育水田,无灌溉工程设施,主要依靠天然降雨种植水稻),其产量受干旱影响较大。吕 世华等^[13]通过五年田间试验研究证明,在干旱严重的情况下,覆膜栽培可以保证水稻高产稳产。本试验仅进 行了一年大田试验,水稻覆膜栽培对水稻产量的影响仍需进一步研究。

2.4 观测期内土壤可溶性碳(DOC)及微生物生物量碳(MBC)含量的变化

表4显示各处理休闲期与水稻生长期土壤可溶性碳(DOC)及微生物生物量碳(MBC)含量。同一处理, 由于土壤温度及根际分泌物的影响,其水稻生长期土壤 DOC及 MBC含量均明显高于休闲期。各处理休闲期 DOC含量在59.8—95.5 mg/kg之间,休闲期内无明显变化。水稻生长期内,CF、TF与PM处理 DOC含量随水 稻生长变化明显,呈现先增加后降低的趋势。全观测期内,CF处理土壤 DOC含量均高于 PM 处理(增幅为 10.0%—29.8%)。TF处理在休闲期土壤 DOC含量低于 PM处理(降幅为4.6%—19.2%),而在水稻生长期较 PM处理较高(增幅为6.2%—21.4%)。

Table 4 Variation of soil DOC and MBC during the observation period							
观测时期		DOC/(mg/kg)			MBC/(mg/kg)		
Observation period		CF	TF	РМ	CF	TF	РМ
休闲期		82.3±9.9 Ac	59.8±5.9Bb	74.1±4.4 Ab	133.8±16.4 Ab	$201.1{\pm}17.0{\rm Ab}$	171.9±17.9 Ab
Fallow season		89.3 ± 4.7 Ac	$67.3{\pm}9.9{\rm Bb}$	$70.6{\pm}7.9~\mathrm{Bb}$	$157.1{\pm}13.0~\mathrm{Ab}$	$169.0{\pm}15.1{\rm Ab}$	180.2 \pm 21.4 Ab
		95.5 ± 9.1 Ac	$71.2 \pm 2.7 Bb$	$78.5{\pm}3.2~\mathrm{Bb}$	$81.9{\pm}18.9~{\rm Ab}$	$72.0 \pm 17.1 \mathrm{Ac}$	$107.7{\pm}14.7{\rm Ab}$
水稻生长期 Rice-rowing season	分蘖期 Tillering	128.1±15.4 Ab	124.1±13.9Aa	102.2±6.7 Ba	234.4±13.0 Aab	236.1±18.6Aab	286.8±15.9 Aab
	拔节期 Shooting	152.5±14.8 Aa	136.0±7.0Aa	117.4±2.2 Ba	413.0±38.7 Ba	422.6±36.4Ba	523.9±27.5Aa
	孕穗期 Booting	122.1±2.3 Ab	117.9±7.6Aa	111.0±2.2 Aa	395.5±36.4 Aa	400.5±37.4Aa	458.3±49.4 Aa
	成熟期 Maturity	$118.2{\pm}13.0~\mathrm{Ab}$	119.5±9.0Aa	100.5±15.4 Aa	408.9±45.1 Aa	407.5±36.1Aa	469.3±36.0 Aa
不同小写字母表示同一列存在显著性差异:不同大写字母表示同一行存在显著性差异。采样日期分别为2012-10-26、2013-1-11、2013-3-22、							

表 4 观测期内土壤 DOC 与 MBC 含量变化

不同小写字母表示同一列存在显著性差异;不同大写字母表示同一行存在显著性差异。采样日期分别为 2012-10-26、2013-1-11、2013-3-22 2013-6-11、2013-7-7、2013-7-27、2013-8-22

休闲期内,各处理土壤 MBC 含量在 72.0—201.1 mg/kg。水稻生长期内,各处理土壤 MBC 含量在水稻拔 节期达到最高值(413.0—523.9 mg/kg)。全观测期内,PM 处理的 MBC 含量均高于 CF 及 TF 处理(增幅为 14.4%—28.5%)。在休闲期及水稻生长期内,并未观测到各处理 CH₄排放与其土壤 DOC 及 MBC 含量显著相 关性关系(*P*>0.05)。

3 讨论

3.1 水分管理对休闲期稻田 CH₄排放的影响

休闲期 TF 处理及 PM 处理厢沟与厢面区域 CH₄排放显著低于 CF 处理。与持续淹水相比,排水落干及地 膜覆盖可抑制 CH₄产生,增加 CH₄氧化。CH₄是产 CH₄菌在严格厌氧环境下作用于产 CH₄基质的产物^[11]。CF 处理土壤 Eh 在较低的适宜 CH₄产生的范围内变动(图1),土壤 DOC 含量呈增加趋势(表4),保证了产 CH₄底 物的供给^[15],其 CH₄排放更主要的受土壤温度的控制^[16-17]。当土壤温度低于 10 ℃时,CF 处理 CH₄排放不明 显(图1),研究表明^[18-19],低温降低产 CH₄菌活性,同时减少由温度主导的气泡迸裂的 CH₄传输。而当土壤温 度一旦适宜产甲烷菌活性时,便有大量的 CH₄排放(图1)。对于 TF 与 PM 处理,土壤 Eh 是其 CH₄排放主要 限制因素。两处理休闲期排水落干,土壤 Eh 较高(图1),影响产 CH₄菌活性,不适于土壤 CH₄产生。同时,较 之于淹水,排水落干降低土壤 DOC 含量,产 CH₄底物降低^[20-21]。此外,TF 与 PM 处理无水层阻碍,土壤通气 性增加,土壤中一些还原性物质被转化为氧化态。Inubushi 等^[22]研究发现稻田土壤 MBC 含量与土壤 CH₄氧 化能力显著正相关,本研究中 PM 处理土壤 MBC 含量均高于 CF 处理,PM 处理土壤氧化 CH₄能力得以增强。 **3.2** 休闲期水分管理对后续稻季稻田 CH₄排放的影响

各处理水稻移栽初期 CH₄排放差异较大(图1)。CF 处理水稻移栽后立即就观测到 CH₄的排放,而 TF 与 PM 处理厢面及厢沟区域在水稻移栽一段时间后才观测到 CH₄排放,且 CH₄排放通量上升缓慢。这与休闲期 水分管理密切相关。Xu 等^[23]研究指出,冬季土壤水分含量越低,其水稻生长期 CH₄产生率越低。Kang 等^[9] 采用 DNDC 模型得出,水稻生长期稻田 CH₄排放与休闲期土壤水分含量呈明显正相关。休闲期排水落干提高 土壤氧化能力(Eh),在限制 CH₄产生的同时减少土壤中产甲烷菌数量^[11],且其产 CH₄菌数量与活性需要经过 相当长时间的厌氧培养才能得以恢复^[24]。

整个水稻生长期,休闲期落干处理较淹水处理减少 CH₄排放 52.0%。这与前人研究结果^[9,23]一致。Cai 等^[7]通过 6 年田间试验研究得出,休闲期排水落干可减少后续稻季 CH₄排放 33—48%。Xu 等^[25]研究发现,休闲期排水落干减缓水稻生长期 CH₄排放,减少水稻生长期 CH₄排放天数。从而进一步减少水稻生长期 CH₄排放。

3.3 覆膜栽培对水稻生长期稻田 CH₄排放的影响

相较于 CF 处理, PM 处理 CH₄排放减少 77.6%, 其中, 厢面及厢沟区域分别减少 70%和 99%。若单考虑 厢面区域 CH₄排放, 会导致过高的估计 PM 处理 CH₄排放量。

对于 PM 处理厢面区域而言, 厢沟水位保持在厢面下 3—12 cm(烤田期除外),这样使厢面区域处于水分 不饱和状态, 厢面区域土壤 Eh 总体高于-200 mV(图 1), 同时由于土壤水分含量较低, 厢面土壤 DOC 含量明 显低于 CF 处理,在一定程度上抑制厢面区域土壤 CH₄产生量^[26-27]。此外, 厢面区域无水层, 其土壤通气性明 显好于淹水土壤, 研究表明^[28], 地膜覆盖有利于 O₂向根际的输送, PM 处理土壤 MBC 含量均高于 CF 处理可 能意味着 PM 处理中好氧微生物生物量的增加, 从而促进 CH₄在土壤中的氧化^[22]。薄膜也会直接阻隔土壤 与大气的气体交换, 延迟并减少 CH₄排放^[29]。对于 PM 处理厢沟区域而言, 虽然非烤田期其土壤 Eh 较低, 但 厢沟区域并未种植水稻, 而水稻的根际分泌物是重要的产 CH₄基质且其通气组织是最主要的 CH₄传输途径, 厢沟区域产 CH₄底物有限且不能有效传输厌氧环境下产生的 CH₄, 所以厢沟区域 CH₄排放不明显。

覆膜高产技术目前在四川省内推广面积达70000 hm^{2[13]},以本实验观测所得的 CH₄排放通量进行初步估

算,该技术可减少全年 CH₄排放 40.3 Gg。而四川省冬水田总面积约 350000 hm^{2[14]},若水稻覆膜节水高产技 术可在四川省冬水田全部应用,则可减少约 0.2 Tg 的四川省冬水田全年 CH₄排放。同时,考察减排措施对土 壤性状及水稻产量的影响也是评估减排措施的一项重要指标。尽管卜玉山等^[30]与 Li 等^[31]的研究指出覆膜 的增温保湿作用加速土壤有机质矿化,长期耕种可能会导致地力衰竭,但 Fan 等^[32]的研究也表明,长期覆膜 对土壤肥力无明显影响。本研究表明,水稻覆膜节水高产技术对水稻产量无明显影响,此外,随着全球气候变 化异常,我国春旱日益严重,吕世华等^[13]通过 5 年的田间试验表明,水稻覆膜节水高产技术可有效解决因干 旱造成的粮食减产问题。综合来看,对于常年淹水稻田而言,覆膜栽培是值得推荐的 CH₄减排技术。

参考文献(References):

- Hansen J E, Lacis A A. Sun and dust versus greenhouse gases: An assessment of their relative roles in global climate change. Nature, 1990, 346 (6286): 713-719.
- [2] Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Quéré C L, Myneni R B, Piao S, Thornton P. Carbon and other biogeochemical cycles // Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom and New York, NY, USA, Cambridge: Cambridge University Press, 2013.
- [3] Hagen S C, Li C, Salas W, Ingraham P, Li J, Beach R, Frolking S. Methane Emissions From Global Paddy Rice Agriculture- a New Estimate Based on DNDC Model Simulations. AGU Fall Meeting Abstracts, 2012, 1: 0147.
- [4] Zhang W, Yu Y Q, Huang Y, Li T T, Wang P. Modeling methane emissions from irrigated rice cultivation in China from 1960 to 2050. Global Change Biology, 2011, 17(12): 3511-3523.
- [5] 李香兰,徐华,李小平,蔡祖聪.水分管理影响稻田甲烷排放研究进展.农业环境科学学报,2009,28(2):221-227.
- [6] 蔡祖聪. 中国稻田甲烷排放研究进展. 土壤, 1999, (5): 266-269.
- [7] Cai Z C, Tsuruta H, Gao M, Xu H, Wei C F. Options for mitigating methane emission from a permanently flooded rice field. Global Change Biology, 2003, 9(1): 37-45.
- [8] 江长胜,王跃思,郑循华,朱波,黄耀. 耕作制度对川中丘陵区冬灌田 CH₄和 N₂O 排放的影响.环境科学,2006,27(2):207-213.
- [9] Kang G D, Cai Z C, Feng X Z. Importance of water regime during the non-rice growing period in winter in regional variation of CH₄ emissions from rice fields during following rice growing period in China. Nutrient Cycling in Agroecosystems, 2002, 64(1/2): 95-100.
- [10] 徐华,蔡祖聪,李小平.冬作季节土壤水分状况对稻田 CH4 排放的影响.农村生态环境, 1999, 15(4): 20-23.
- [11] 蔡祖聪,徐华,马静.稻田生态系统 CH4和 N2O 排放.合肥:中国科学技术大学出版社,2009:348-349.
- [12] Yan X Y, Akiyama H, Yagi K, Akimoto H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Global Biogeochemical Cycles, 2009, 23(2): 20-23, DOI: 10. 1029/2008GB003299.
- [13] 吕世华,曾祥忠,任光俊,张福锁.水稻覆膜节水综合高产技术.四川农业科技,2009,(2):23-24.
- [14] 陈桂权.四川冬水田的历史变迁.古今农业,2014,(1):1-16.
- [15] Lu Y H, Wassmann R, Neue H U, Huang C Y. Dynamics of dissolved organic carbon and methane emissions in a flooded rice soil. Soil Science Society of America Journal, 2000, 64(6): 2011-2017.
- [16] Wassmann R, Neue H U, Bueno C, Lantin R S, Alberto M, Buendia L V, Bronson K, Papen B H, Rennenberg H. Methane production capacities of different rice soils derived from inherent and exogenous substrates. Plant and Soil, 1998, 203(2): 227-237.
- [17] Tokida T, Adachi M, Cheng W G, Nakajima Y, Fumoto T, Matsushima M, Nakamura H, Okada M, Sameshima R, Hasegawa T. Methane and soil CO₂ production from current-season photosynthates in a rice paddy exposed to elevated CO₂ concentration and soil temperature. Global Change Biology, 2011, 17(11): 3327-3337.
- [18] Tokida T, Cheng W G, Adachi M, Matsunami T, Nakamura H, Okada M, Hasegawa T. The contribution of entrapped gas bubbles to the soil methane pool and their role in methane emission from rice paddy soil in free-air [CO₂] enrichment and soil warming experiments. Plant and Soil, 2013, 364(1/2): 131-143.
- [19] Schütz H, Seiler W, Conrad R. Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry, 1990, 11(2): 77-95.
- [20] Zhan M, Cao C G, Wang J P, Jiang Y, Cai M L, Yue L X, Shahrear A. Dynamics of methane emission, active soil organic carbon and their relationships in wetland integrated rice-duck systems in Southern China. Nutrient Cycling in Agroecosystems, 2011, 89(1): 1-13.

- [21] Naser H M, Nagata O, Tamura S, Hatano R. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Science and Plant Nutrition, 2007, 53(1): 95-101.
- [22] Inubushi K, Cheng W, Mizuno T, Lou Y, Hasegawa T, Sakai H, Kobayashi K. Microbial biomass carbon and methane oxidation influenced by rice cultivars and elevated CO₂ in a Japanese paddy soil. European Journal of Soil Science, 2011, 62(1): 69-73.
- [23] Xu H, Cai Z C, Tsuruta H. Soil moisture between rice-growing seasons affects methane emission, production, and oxidation. Soil Science Society of America Journal, 2003, 67(4): 1147-1157.
- [24] Xu H, Cai Z C, Jia Z J, Tsuruta H. Effect of land management in winter crop season on CH₄ emission during the following flooded and rice-growing period. // Wassmann R, Lantin R S, Neue H U, eds. Methane Emissions from Major Rice Ecosystems in Asia. Netherlands: Springer, 2001: 327-332.
- [25] Xu H, Cai Z C, Jia Z J. Effect of soil water contents in the non-rice growth season on CH₄ emission during the following rice-growing period. Nutrient Cycling in Agroecosystems, 2002, 64(1/2): 101-110.
- [26] Trolldenier G. Methanogenesis during rice growth as related to the water regime between crop seasons. Biology and Fertility of Soils, 1995, 19(1): 84-86.
- [27] Kalbitz K, Solinger S, Park J H, Michalzik B, Matzner E. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science, 2000, 165(4): 277-304.
- [28] 李永山,吴良欢,路兴花,赵利梅,范巧兰.丘陵山区覆膜旱作稻田土壤硝态氮和铵态氮动态变化规律探讨.科技通报,2007,23(2): 207-210.
- [29] 陶丽佳, 王凤新, 顾小小. 覆膜滴灌对温室气体产生及排放的影响研究进展. 中国农学通报, 2013, 29(3): 17-23.
- [30] 卜玉山, 苗果园, 周乃健, 邵海林, 王建程. 地膜和秸秆覆盖土壤肥力效应分析与比较. 中国农业科学, 2006, 39(5): 1069-1075.
- [31] Li Y S, Wu L H, Zhao L M, Lu X H, Fan Q L, Zhang F S. Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition. Soil and Tillage Research, 2007, 93(2): 370-378.
- [32] Fan M S, Lu S H, Jiang R F, Six J, Zhang F S. Long-term non-flooded mulching cultivation influences rice productivity and soil organic carbon. Soil Use and Management, 2012, 28(4): 544-550.