DOI: 10.5846/stxb201312293055

宁婷, 郭忠升.半干旱黄土丘陵区撂荒坡地土壤水分循环特征.生态学报,2015,35(15):5168-5174. Ning T, Guo Z S.Characteristics of the soil water cycle in an abandoned sloping field in the semi-arid Loess Hilly Region.Acta Ecologica Sinica,2015,35 (15):5168-5174.

半干旱黄土丘陵区撂荒坡地土壤水分循环特征

宁 婷¹, 郭忠升^{1,2,*}

1 中国科学院水利部水土保持研究所,杨凌 712100
2 西北农林科技大学水土保持研究所,杨凌 712100

摘要:为深入了解半干旱黄土丘陵区土壤水分循环特征和为开展荒地造林工作提供背景数据,在宁南上黄生态试验站,选取典型多年撂荒坡地,进行土壤水分的长期定位观测,分析其土壤水分补给、消耗特征与时空变异性。结果表明:研究区降雨入渗量和入渗深度随降雨量增加而增加,入渗补给系数约为0.44,雨水资源化率有待提高。定义全年一半以上的次降水事件中能被有效补给的土层深度为降水普遍入渗深度,则研究区降水普遍入渗深度为0—40 cm,观测期内最大入渗深度不超过 300 cm。同时,土壤水分的蒸散发量在丰水年>平水年>干旱年,主要蒸散发作用层位于0—200 cm 土层范围内,最大蒸散发深度达到 300 cm 以下。该区土壤储水量的季节变化为"V"型,剖面土壤平均含水量的垂直变异则呈现反"S"型。土壤水分的变异系数随土层深度的增加表现出幂函数递减趋势,结合有序聚类法的分层结果,可采用0.20 和0.05 两个 *CV*值将撂荒地土壤剖面划分为水分活跃层(0—40 cm)、次活跃层(40—200 cm)和相对稳定层(200 cm 以下)3个层次。 关键词:半干旱黄土丘陵区;土壤水分;入渗;蒸散发;变异系数

Characteristics of the soil water cycle in an abandoned sloping field in the semiarid Loess Hilly Region

NING Ting¹, GUO Zhongsheng^{1,2,*}

Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China

Abstract: To better understand the characteristics of soil water cycle in the semi-arid Loess Hilly Region and to provide background data for the change in land cover, a typical sloping filed which was abandoned for many years was selected at the Shanghuang Experimental Station in southern Ningxia. Dynamics of the soil water were continuously monitored by using a neutron probe in fixed positions. The results showed that the rainfall was not frequent and precipitation was limited. The amount of rainfall recharge (y) was positively correlated to the precipitation (x), as expressed in the equation y = 0.44x - 0.58 ($R^2 = 0.980$, P < 0.01). The recharge coefficient was 0.44, and the rate of rainwater harvesting was to be improved. Similarly, the recharge depths were increased with the precipitation. The impact of rainfall on soil water content was mainly concentrated to the top 40 cm of the soil. There was a time lag between the rainfall recharge and the soil water in deeper soil layers. The soil depths could be effectively recharged by rainfall of more than 50% precipitation events in a whole year were defined as the general infiltration depth. This concept was helpful to redefine assessment standards of dried soil layer (DSL). In the study area, the general infiltration depth was 0—40 cm. Although continual rainfall increased the movement of soil water to deeper soil layers, the maximum infiltration depth did not exceed 300 cm during the observation period. Meanwhile, evapotranspiration in this region was always positively correlated to air temperature and soil water content.

收稿日期:2013-12-29; 网络出版日期:2014-09-25

基金项目:国家自然科学基金资助项目(41271539)

^{*} 通讯作者 Corresponding author.E-mail: zhongshenguo@ soho.com

During the growing season, evapotranspiration was stronger than in the non-growing season and it was higher in the wet year and lower in the dry year than in the year with normal level of precipitation. Soil water content, which was influenced by evapotranspiration, decreased with soil profile. The major depth that was affected by evapotranspiration was 0-200 cm, with the maximum depth reaching to more than 300 cm. Furthermore, seasonal changes in the soil water storage showed a Vshaped trend, with the minimal value appearing at June or July. The average soil water content in the soil profile showed a reversed S-shaped trend, with the maximum and minimum values at the depth of 40 and 200 cm, respectively. Additionally, variance coefficient of the soil water from the soil profile showed a decreasing power function trend with the increase of soil depth. Referring to the results of vertical division of soil water profiles by the sequential clustering method, the variance coefficient of 0.20 and 0.05 could be used as criterions to divide the soil water profile into three levels: the active layer (0-40 cm), the second active layer (40-200 cm), and the relatively stable layer (deeper than 200 cm). In the wet year, due to continual rainfall infiltration and strong evapotranspiration, the variance coefficients at the soil depth of 0-200cm were increased and the range of active layer was broadened.

Key Words: Semi-arid Loess Hilly Region; soil water; infiltration; evapotranspiration; variance coefficient

半干旱黄土丘陵区原生植被匮乏,林草覆盖率较低,是我国水土流失最为严重、生态环境最为脆弱的地区 之一。建国以来,该区相继开展了大面积的植树造林工作,并取得了一定进展^[1]。但是,由于人们对土壤水 资源承载能力认识不足,加之植被恢复过程中树草种选择不当等原因,致使多年生林草地深层土壤普遍出现 旱化现象,甚至形成了土壤干层^[2:4]。受降水、蒸发、蒸腾、径流等因素的影响,土壤水分时刻处于循环变化之 中^[5]。了解土壤水分循环特征,有助于明晰土壤干层形成的水分动力学机制,从而争取将干层的"被动治理" 改为"主动预防"。李玉山^[6]最早对黄土区土壤水分循环特征进行了阐述,指出该区降水可入渗深度很少能 超过蒸发蒸腾作用层深度,土壤水分收支的负平衡是导致深层土壤干燥化形成的原因。陈洪松等^[7]也采用 人工和天然降雨试验,研究了黄土高原沟壑区荒草地和裸地的土壤水分循环特征,认为气候变暖和降水的减 少是土壤干层形成的直接原因,人工植被类型选择不当以及群落密度过大、生产力过高等则会加剧干层的形 成进程。总体而言,土壤水分循环特征的相关研究,特别是长期定位研究在该区开展较少。本文基于在宁南 半干旱黄土丘陵区的长期定位试验,分析典型撂荒坡地的土壤水分循环特征,旨在为当地植被恢复工作的顺 利开展和土壤水资源的可持续利用提供背景数据与理论支撑。

1 材料与方法

1.1 研究区概况

研究区位于宁夏固原上黄生态试验站,地处宁南半干旱黄土丘陵区 35°59′—36°02′N,106°26′—106°30′ E 范围内。区内沟沿线以下坡度>25°,海拔高度 1534—1824 m。研究区降雨年际变化大,年降雨量变化在 634.7 mm(1984年)—259.9 mm(1991年),平均为414.9 mm;年内降水分配不均,主要集中在 7—9月,期间降 雨量可占到年降雨量的 70%以上,无霜期 152 d。土壤类型为黄绵土,植被类型为森林草原向典型草原过渡。 原生植被以多年生丛生低矮禾草为主,伴以少量旱生灌木、半灌木,代表植被有长茅草(Stipa bungeana)、阿尔 泰狗哇花(Heteropappus attaicus)、茭蒿(Artemisia giraldii)、百里香(Thymus mongolicus)等。

1.2 试验设计

经踏查,于黑刺峁东坡中部选定一块典型撂荒坡地建立试验地,其坡度约10°,海拔约1650 m。地表植被较为稀疏,覆盖度仅0.50 左右,存在土壤结皮现象。植被种类主要为长茅草、阿尔泰狗哇花、茭蒿和百里香,植株均高约20 cm,单位面积生物量约60 g。

2002年,在试验地建立了面积为100m²(长20m×宽5m)的径流小区,在小区中心地带水平安置两根长度为400cm的中子仪铝合金套管,采用CNC503A(DR)型智能中子水分仪进行剖面土壤含水量的长期定位

1.3 数据处理

绘制次降雨前后 2 次测定的剖面土壤水分变化图,两条曲线的交点至地表的距离为降水入渗深度,类似 地,一定时期始末 2 条土壤水分垂直变化曲线的交点至地表的距离即期间蒸散发作用对土壤水分的消耗深 度。由于当地降雨一般历时较短,且降雨过程中温度低、空气湿度大,土壤水分蒸发有限。因此,降雨前后两 次测得的剖面土壤储水量之差即次降雨对土壤水分的补给量。降雨量与土壤水分补给量的差值,为降雨损耗 量,损耗的形式主要包括林冠截留和地表径流。而某一时间段始末最大蒸散发深度内土壤储水量之差,加上 期间降水对土壤水分的总补给量,即为该时间段内的土壤水分蒸散发量。

土壤储水量计算公式如下:

$$Dw = 0.1 \sum_{i=1}^{i=n} \text{VSWC}_i \times H_i$$

式中, Dw 为土壤水资源储量(mm); n 为土层总数; VSWC 为各观测层土壤容积含水量(%); H 为各观测层所 代表的土层深度(cm)。在本研究中, n = 21, 除表层(5 cm 处)和末层(400 cm 处) H_1 、 $H_{21} = 10$ 外, 其余土层 H = 20。

本文采用 SPSS 18.0 进行数据处理与显著性检验(LSD 法), Excel 2007 进行回归分析和绘图。

2 结果与分析

2.1 撂荒坡地降水入渗特征

研究区地下水埋藏较深,降水是该区土壤水分的唯一补给源。2011—2013年的年降水量分别为209.90、370.90、541.30 mm(表1),与历史观测资料对比可知这3个年份分属特旱年、平水年和丰水年,有代表性。在观测到的72场次降雨中,5 mm以下的次降水事件占到了36.11%,10 mm以下的次降水事件则占到了55.55%。可见,本区降水的总体特征表现为降水事件少、次降水量有限。

		Table 1 The o	characteristics o	f rainfall in 2011	to 2013			
年份 Year	总降雨量/mm Total precipitation	总降雨场次 Total rainfall frequency	各降雨量等级下降雨次数 Rainfall frequency of each precipitation level					
			0—5 mm	5—10 mm	10—20 mm	20—50 mm	50—100 mm	
2011	209.90	17	5	4	5	2	1	
2012	370.90	28	9	8	5	5	1	
2013	541.30	27	12	2	6	4	3	
合计 Total	1122.10	72	26	14	16	11	5	
比例 Proportion/%			36.11	19.44	22.22	15.28	6.95	

表1 2011—2013年降水特征

为量化降雨量的多寡对降雨补给深度和补给量的影响,选取 3a 内 12 场具有代表性的降雨事件,统计相关数据如表 2。由表 2 可以看出,次降雨对土壤水分的补给量(y)随降雨量(x)增加而增大。对两变量进一步作回归分析可知:二者之间的关系可以用 y=0.44x-0.58 (*R*²=0.980,*P*<0.01)来表示(图 1)。研究区降水入 渗补给系数约为 0.44,降水的资源化率有待提高;有效降水量的最小值为 1.32 mm,当降雨量低于该值时,有限的降雨会被冠层截留或被蒸发掉,从而无法对土壤水分进行有效补给。

由表2还可看出,次降雨量越大,雨前表层土壤越干燥,越有助于增加入渗深度。然而,该区全年一半以

Table 2 The recharge depth and recharge amount of different precipitation						
降水日期 Date	次降雨量 Precipitation amount/mm	雨前表层土壤含水量 Initial soil water content /%	补给深度 Recharge depth/cm	补给量 Recharge amount/mm	损耗量 Loss amount/mm	
2012-05-21	4.0	4.20	40	1.25	2.70	
2012-09-09	9.9	8.84	20	3.97	5.93	
2011-08-14	11.2	3.79	60	3.91	7.29	
2012-09-16	14.5	7.70	40	5.26	9.24	
2011-06-30	18.5	4.29	80	9.92	8.58	
2011-08-16	29.3	5.58	100	13.18	16.12	
2011-09-04	32.9	6.79	40	13.33	19.57	
2013-07-12	40.0	12.80	100	18.24	21.76	
2012-08-16	50.3	7.45	120	20.92	29.38	
2013-06-22	53.2	6.15	80	19.30	33.90	
2012-06-27	65.1	3.56	100	26.93	38.12	
2013-07-04	90.3	8.00	80	41.61	48.69	

表 2 不同降雨量下的降雨补给深度与补给量

上的降水事件的降水量在 10 mm 以下,此时,有限的降 水通常为撂荒地表层土壤所截持,然后才会在土水势梯 度的作用的下缓慢下移^[8],致使次降水的补给深度往 往较浅。深层土壤水分的补给有赖于强且密集的连续 降水。多年观测结果表明,试验区以 0-40 cm 土层范 围内土壤水分对降雨的响应最为普遍,该深度可被定义 为"降水普遍补给深度",在全年一半以上的降水事件 中,这一土层都能被有效补给。另外,由于某一区域降 水普遍入渗深度随坡位、坡度、地上植被类型及其覆盖 度等变化而变化,该指标对于评价某一地区土壤水资源 状况和指导当地植被建设具有一定的参考意义。

土壤水分入渗与再分布是一个由浅入深的过程。 即使是在强降水、高补给的情况下,深层土壤水分对降 水的响应也不像表层那样直接与和迅速,而是存在时间 上的延迟^[9]。且土层越深,降水对该层土壤水分的补 给越滞后^[10]。2013年7月,试验区迎来数十年不遇的 高强度连续降水,当月累计降雨量高达258.5mm。其 中,7月8日到10日的降雨量就高达90.3 mm。由图2 可以看出,以6月30日为起点,至7月15日、7月30 日、8月15日、8月31日,在土壤水分再分布和新一轮 的降水入渗等作用下,降水入渗补给深度不断增加,降 水湿润锋分别下移至120、160、200 cm 和 220 cm, 随之 引起的新入渗土层范围内土壤储水量的增加值分别为 77.28、12.55、5.85mm 和 2.27 mm。而自 8 月 31 日的 220cm 下渗至9月15日的240 cm 时,相应20 cm 土层 的土壤储水量仅增加1.05 mm,且该土层与下层之间的 土壤水势顺差已不复存在。此时,若无新一轮的降水补 给,湿润锋将难以继续下移,降水对土壤水分的补给也

图 1 次降雨量与补给量之间的关系

Fig.1 The relationship between precipitation and recharge amount

图 2 2013 年连续降雨条件下剖面土壤含水量的动态变化 Fig. 2 Dynamic change of soil water content from soil profile under continuous rainfall conditions in 2013

5171

就会止于该深度。可见,随着土壤深度的增加,降水对下层土壤水分的补给呈现出总补给量减少、补给速度变缓的趋势。观测期内,最大补给深度始终在 300 cm 以内。

2.2 撂荒坡地土壤水分消耗特征

研究区土壤水分无深层渗漏,其输出项主要是土壤与植被的蒸散发。在土壤的导水性能、植被生物量一定的情况下,土壤水分的蒸散发主要取决于气象条件以及剖面土壤含水量等因素。气温越高、剖面土壤湿度越大,土壤水分的蒸散发作用越强烈^[11]。一年之中,各月土壤水分蒸发量与气温基本呈正相关关系(表3)。 生长季的 6—8月份水分蒸散发量相对较高,而在非生长季(10月—次年3月),气温和土温较低,土壤水分移动相对迟缓,因而土壤水分蒸散发作用层深度较浅,蒸散发量也比较少。土壤水分蒸散发量的年际差异则表现为丰水年>平水年>干旱年。以2013年丰水年为例,虽然期间降水补给量大,但剖面土壤含水量高,土壤蒸散发移动能力强,致使76.68%的降水补给还是被强烈的蒸散发所消耗。

表 3 2011—2013 年月蒸发量							
Table 3Monthly evapotranspiration in 2011 to 2013							
月份 Month ——		蒸散发量 Evapotranspiration/mm					
	4	5	6	7	8	9	Total
2011	12.43	9.74	23.22	18.06	28.78	10.71	102.92
2012	27.15	30.83	40.95	32.42	8.75	8.75	144.91
2013	36.50	15.57	45.84	20.81	42.83	15.57	167.14

与降水的入渗过程不同,蒸散发作用对土壤水分的 消耗不是一个由浅层到深层的渐进过程,而是表现出剖 面土壤水分的"整体移动性"。在该区较大的土壤热通 量作用下,土壤蒸散发深度较深,最大蒸散发深度很快 形成。2011年久旱少雨条件下,撂荒坡地 0—400 cm 剖面土壤含水量的动态变化如图 3 所示。从图中可以 看出,试验地 0—200 cm 土壤剖面范围内水分蒸散发作 用剧烈,随着时间的推移,土壤含水量明显降低。而 200 cm 土层以下,虽然土壤含水量明显降低。而 200 cm 土层以下,虽然土壤含水量表现出随土壤深度 增加而增加的趋势,但这并不代表土壤蒸散发作用已不 存在,只是随着土壤深度的增加,水分蒸散发作用不弱, 其对各层土壤含水量的减少作用被重力势梯度的增加 作用所掩盖。观测结果最终显示,研究区最大土壤蒸散 发作用层深度可深至地下 300 cm,这一深度超过了所 观测到的降水最大入渗深度。

2.3 撂荒坡地土壤水分的时空变异

土壤水资源的实际存储量是降水与蒸散发共同作

用的结果,可直观地反映土壤水分动态变化状况。2011—2013 年试验地 0—400 cm 土层储水量的动态变化 如图 4 所示。由图可知,研究区土壤水资源具有明显的季节变异性,其储量在一年之中往往呈现先减少后增 加的"V"字型变化趋势。从生长季初的 4 月份开始,随着气温的升高,土壤储水量逐渐下降,极小值出现在 6—7 月份;雨季到来后,由于降水补给量的增加,土壤储水量也随之有所增加。而在非生长季(10 月—次年 3 月),由于降水和蒸散发量都比较有限,土壤储水量的变化趋势趋于平缓。土壤水库上述各阶段均起到了一定的水分调节作用。

另一方面,受降水补给、蒸散发以及重力势梯度的共同影响,撂荒坡地土壤含水量有着明显的垂直变化规

律。图 5 所示为 2011—2013 生长季(4—10 月) 撂荒坡 地 0—400cm 剖面土壤平均含水量的变化曲线。由图 可知,研究区土壤常处于低湿状态,田间稳定湿度相对 较低。土壤含水量呈现出先增加,后减少,再增加的反 "S"型垂直变化规律,极大值和极小值深度分别出现在 40 cm 和 200 cm 处。更进一步地,与 2011 年相比,2012 年土壤剖面 0—180 cm 范围内平均含水量均有所增加, 2013 年,这一含水量增加趋势拓展至 0—220 cm 范围。 并且,随着土层深度的增加,相应的增加量逐渐递减,再 次验证了降水入渗是一个自上而下的过程,土壤水分的 入渗深度取决于降水量的多寡。降雨量越大,雨水入渗 深度越深,且入渗深度范围内的土壤含水量对降雨的响 应也越显著。

5173

土壤水分的变异系数(CV)表明了各土层土壤水分运动的活跃程度。土壤水分变异系数越大,意味着该 层土壤水分运动越活跃,土壤干、湿交替越频繁。土壤含水量随降水量、蒸散发量大小而波动性变化,越接近 地表,这种波动就越明显。由图6可以看出,随土层深度的加深,土壤水分季节变异系数呈现幂函数递减的整 体变化趋势。表层(5 cm)土壤水分变异系数最高,次表层(20 cm)即降至表层的60%左右,之后持续下降,至 200 cm以下土层保持在一个较低的水平值上。具体来看,2012年(平水年)剖面土壤水分变异系数最低;在 2011年(特旱年),持续的干旱不断消耗土壤水分,导致土壤水分蒸散发层范围内土壤水分变异系数较大;在 2013年(丰水年),频繁地降水增加了对深层土壤水分有效补给的概率,再加上土壤水分的蒸散发量随之增 大,使 0—200 cm 土层土壤水分变异系数也明显增加。

为划分土壤水分的垂直变化层次,采用李俊等文献^[12]聚类分析法,以土壤水分深度为排序轴,对剖面土 壤含水量进行聚类。首先将土壤剖面 21 个土层的分类数设定为 3 类,通过最小误差函数,确定了其垂直分层的 两个界线,分别为第 3 层(40 cm)和第 11 层(200 cm)。同时,采用变异系数来对黄土高原地区土壤剖面进行层 次划分,也已得到一致认可^[13]。结合上文论述,可以采用 0.20 和 0.05 这两个 *CV* 值作为划分标准,将撂荒坡地土 壤剖面划分为水分活跃层(0—40 cm)、次活跃层(40—200 cm)和相对稳定层(200 cm 以下)3 个层次。

3 讨论与结论

3.1 研究区土壤水分循环特征与土壤干层的形成

"降水少,蒸发强"是半干旱黄土丘陵区气候的主要特点。研究区土壤水分的补充取决于年降水量及其季节分配。降水入渗深度和补给量随着降雨量增加而增加,普遍入渗深度为0—40 cm 土层,无论是干旱年还是丰水年,全年一半以上的次降水事件可对其进行有效补给。深层土壤水分的补给则依赖于强且密集的连续降水,观测期内最大入渗深度为290 cm,出现在特大丰水年过后的第二年(2004年)^[14]。同时,土壤蒸散发量在丰水年>平水年>干旱年。在干旱年,土壤水分呈"入不敷出"的负补偿状态;即使是在丰水年,入渗雨量的80%随后也被强烈的蒸散发作用所消耗。撂荒坡地的主要蒸散发作用作用层位于0—200 cm 土层范围内,最大蒸散发深度可深达地下300 cm。这一下限深度明显比陈洪松等^[7]在黄土高原沟壑区王东沟流域所测的200 cm 要深。更重要的是,土壤水分的蒸散发深度在降水最大入渗深度以下,决定了土壤水分循环深度的大小。深层土壤由于得不到有效的降水补给而逐渐干燥化,最终导致出现土壤干层。

3.2 研究区土壤水分的垂直分层与土壤干层的划分标准

该区土壤剖面水分的垂直变化具有明显的层次性。整个研究剖面上,土壤平均含水量呈现"升-降-升"的 垂直变化规律,极大值和极小值分别出现在 40 cm 和 200 cm 土深处;土壤含水量的有序聚类分析结果也显示 40 cm 和 200 cm 土层为其垂直分层地两个界限。这两个深度恰好是土壤水分普遍入入渗深度的下限值和主 要蒸散发作用层深度的下限值。据此,可采用 0.20 和 0.05 这两个 CV 值,将撂荒地剖面土壤划分为水分活跃 层(0—40 cm)、次活跃层(40—200 cm)和相对稳定层(200 cm 以下)3 个层次。

目前,土壤干层的划分标准尚未统一^[2]。郭忠升^[15-16]从土壤水分利用的角度出发,认为土壤干层应以萎 蔫系数为下限,凡土壤含水量低于林草植被萎蔫系数的土层均为土壤干层。在水分活跃层范围内,土壤水分 蒸散量大,遇久旱天气,剖面土壤含水量会有明显下降,甚至降至萎蔫系数以下。但是,由于这一深度属降水 普遍入渗深度的范围,降水对该范围内土壤水分的补给行为普遍存在,相应土层即使出现土壤干燥化现象,也易 于得到缓解。因此,在识别土壤干层时,可取降水普遍入渗深度的下限至最大蒸散发作用层深度范围内土壤萎 蔫系数的平均值为标准,一旦林草地相应深度范围内剖面土壤含水量低于该平均值,即可认为存在土壤干层。

参考文献(References):

- [1] Guo Z S, Shao M A. Impact of afforestation density on soil and water conservation of the semiarid Loess Plateau, China. Journal of Soil and Water Conservation, 2013, 68(5): 401-410.
- [2] Chen H S, Shao M A, Li Y S. Soil desiccation in the Loess Plateau of China. Geoderma, 2008, 143(1/2): 91-100.
- [3] Wang Y Q, Shao M A, Liu Z P, Warrington D N. Investigation of factors controlling the regional-scale distribution of dried soil layers under forestland on the Loess Plateau, China. Surveys in Geophysics, 2012, 33(2): 311-330.
- [4] Zhao J B, Du J, Chen B Q. Dried earth layers of artificial forestland in the Loess Plateau of Shannxi Province. Journal of Geographical Sciences, 2007, 17(1): 114-126.
- [5] 杨文治. 黄土高原土壤水资源与植树造林. 自然资源学报, 2001, 16(5): 433-438.
- [6] 李玉山. 黄土区土壤水分循环特征及其对陆地水分循环的影响. 生态学报, 1983, 3(2): 91-101.
- [7] 陈洪松,邵明安,王克林.黄土区深层土壤干燥化与土壤水分循环特征.生态学报,2005,25(10):2491-2498.
- [8] 邵明安, 王全九, 黄明斌. 土壤物理学. 北京: 高等教育出版社, 2006: 153-156.
- [9] 鲍彪,毕华兴,云雷,高路博,许华森,安云.晋西黄土区刺槐林地土壤水分对降雨的响应.北京林业大学学报,2012,34(2):84-89.
- [10] 赵娇娜,徐学选,李星,张良德,宇苗子.长武塬区降雨入渗特征.中国水土保持科学,2012,10(4):37-44.
- [11] 郭忠升, 邵明安. 人工柠条林地土壤水分补给和消耗动态变化规律. 水土保持学报, 2007, 21(2): 119-123.
- [12] 李俊,毕华兴,李笑吟,郭孟霞,刘鑫,林靓靓,郭超颖.有序聚类法在土壤水分垂直分层中的应用.北京林业大学学报,2007,29(2): 98-101.
- [13] 李洪建, 王孟本, 柴宝峰. 黄土高原土壤水分变化的时空特征分析. 应用生态学报, 2003, 14(4): 515-519.
- [14] 郭忠升, 邵明安. 半干旱区人工林地土壤入渗过程分析. 土壤学报, 2009, 46(5): 953-958.
- [15] 郭忠升. 黄土丘陵半干旱区土壤水资源利用限度. 应用生态学报, 2012, 21(12): 3039-3035.
- [16] 郭忠升,李耀林.植物生长与土壤水关系调控起始期.生态学报,2009,29(10);5721-5729.