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Expression profiling of genes related to photosynthesis and antioxidant capacity in

flue-cured tobacco seedlings subjected to chilling stress
CUI Cui*, WANG Lijuan, ZHOU Qingyuan, TAN Zunfei, QU Cunmin, ZHANG Zhengsheng

College of Agronomy and Biotechnology, Southwest University, Chongging 400715, China

Abstract: Tobacco is an important economical leaf crop and complex model organism that is cultivated worldwide. Low
temperature is the one of major factors causing abiotic damage to flue-cured seedlings; this damage can affect the growth and
development of flue-cured tobacco seedlings and can decrease the yield and quality of flue-cured tobacco leaves. Currently,
technologies for cultivating seedlings by using water and oxygen have been widely adopted in southern tobacco-cultivating
regions. However, temperature is dependent on climate, which is difficult to control artificially. Low temperatures during the
early spring season limit the culture of strong seedlings in southern tobacco-cultivation areas. The objective of this study was
to analyze physiological and ecological adaptations of flue-cured tobacco seedlings by measuring parameters related to levels
of photosynthetic, oxidant, and antioxidant factors in the cell membranes of leaves. We also used digital gene expression
profiling technology to analyze the differential expression of genes in flue-cured tobacco seedlings after chilling stress.
Seedlings of flue-cured tobacco strain K326 were used as experiment materials. Tobacco seedlings with 5—6 true leaves

were divided in two groups. One group of flue-cured seedlings was placed in a light incubator at a low temperature range of
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5 °C (night) to 7 °C (day) for 3 days as chilling stress treatment. Seedlings in the other ( control) group remained at the
initial temperature and illumination conditions and grew at a normal temperature range of 23 °C (night) to 25 C (day),
with other similar conditions. After chilling stress for 3 days, total chlorophyll ( Chl), chlorophyll a ( Chl a), and
chlorophyll b (Chl b) contents decreased significantly by 2.88%—6.82% , and the net photosynthetic rate (Pn) , stomatal
conductance (Gs), and transpiration ( Tr) decreased significantly by 14.14%—68.50% compared with that of seedlings
grown under the favorable temperature. Intercellular CO, concentration ( Ci) showed no obvious changes. In terms of the
membrane oxidant levels of leaves from flue-cured tobacco seedlings, proline and malondialdehyde ( MDA) contents and
electrolyte permeability increased significantly by 3.88%—144.22% compared with that of control seedlings, while the
oxyradical generation rate decreased significantly by 10.66%. Additionally, the membrane antioxidant capacity of flue-cured
tobacco seedlings and the activities of superoxide dismutase (SOD) and catalase ( CAT) increased significantly by 6.07%
and 45.64% , respectively, compared with that grown under the favorable temperature, while peroxidase ( POD) activity
was significantly reduced. The vitamin C ( Vc) and glutathione ( GSH) contents increased significantly by 197.36% and
14.15% , respectively, compared with that of the control. Under chilling siress conditions, 2357 genes from K326 seedlings
were differentially expressed significantly compared with that of seedlings grown under the favorable temperature. Of these,
1673 genes were upregulated, and 684 genes downregulated. Gene ontology analysis revealed that these differentially
expressed genes were mainly involved in transcription factors, transmembrane transporter proteins, antioxidant systems,
signaling pathways, and others. Gene ontology analysis revealed relationships with the photosystem, photosynthetic
membrane, chloroplast, plastid, cytoplasm, membrane, ribosomes, and more. In particular, 524 differentially expressed
genes were associated with plastid expression. The molecular functions of these differentially expressed genes were mainly
associated with oxidoreductase activity and the antioxidant system of the cell membrane of flue-cured seedlings. Differential
expression was also observed for genes involved in biological processes such as response to stress, photosynthesis, light
reaction of photosynthesis, hormone-mediated signaling pathways, and more. After analysis of metabolism pathways related
to differential gene expression, our results showed that genes related to photosynthesis-antenna proteins and photosynthesis
were downregulated, while genes involved in oxidant capacity, such as Ve, GSH, and proline metabolism, were
upregulated. Leaves of flue-cured tobacco seedlings suffered oxidant damage under chilling stress condition, but the
promotion of antioxidant ability by chilling stress had an active protective effect on flue-cured tobacco seedlings. Therefore,
flue-cured seedlings had some capacity to adapt to chilling stress by adjustment of gene expression, which altered pathways
involved in photosynthetic, oxidant, and antioxidant metabolism to reduce the damage resulting from the stress conditions.
Importantly, the results of gene expression analysis and physiological ecological adaptation were consistent. Hence, it is
possible to analyze ecological adaptation and differential gene expression of crops under stress, and such studies will

facilitate further analysis of gene ontology functions and gene expression relationships.

Key Words: flue-cured tobacco; chilling stress; digital gene expression profile; differentially expressed genes
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Table 1 Some physiological parameters of leaves of tobacco seedling under chilling stress

F B A A AR bR it AbER =/ %
The physiological and biochemical parameters CK treatment range of increasing
Y& HE S Photosynthetic capacity

H4EZ i Chlorophyll contents/ (mg/g) 0.74 0.71 -4.05"
H4%2% a & Chla contents/ (mg/g) 0.52 0.51 -2.88"
44 b &4 Chlb contents/ (mg/g) 0.22 0.21 -6.82"
HOLAEE P/ (pmol m™2 s71) 2.02 0.64 -68.50 "
M A S AL Gs/(mmol m™2 s71) 0.05 0.04 -20.91"
Jfa ) — AR Ci/ (umol mol ™) 329.59 329.10 -0.15
ZEREHE R Tr/(mmol m™2 s71) 1.52 1.30 -14.14"
4 Ak KB4 AL Membrane oxidation and antioxidant

&R & & Proline content/ (mg g™' min™") 21.03 51.35 144.22*
N ¥ MDA content/ ( pmol/g) 5.03 5.23 3.88°
L ff B 5K Electrolyte permeability/ % 0.39 0.44 12.82"
48,11 325 B R Oxyradical Generation rate/ (nmol mg™" min™') 3.47 3.10 -10.66*
SOD {1 SOD content/ (U g™' min™") 60.42 64.09 6.07"
CAT % CAT content/(U g™! min™!) 2.41 3.51 45.64*
POD {&E POD content/ ( A470 ¢! min™!) 5.15 4.90 -4.95*
Ve % Ve content/ (mg/100g 56.90 169.20 197.36*
GSH it GSH content/ ( pg/g) 127.26 145.27 14.15*

w FernFE5 .3 (P<0.05)
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Fig.1 Differentially expressed genes( DEGs) of leaves of tobacco

seedling under chilling stress
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Fig.2 Classification on functional of differentially expressed genes of leaves of tobacco seedling under chilling stress
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Lheb1  Lheb2 \Lheb3  Lheb4 | Lhebs ) %5 ¥ 7EAR I M8

NRAE R AR 0 T B0 K 4
LT AR BE T T R

®2 SHEER-REEEAXNERREERBXER

Table 2 Information of differential expression genes related to photosynthesis-antenna proteins

FH D gene ID logyratio BFETIHE Putative function HH Prolein
CAA45523.1 2385 p%motcfsystem . I light-harvesting  chlorophyll  a/b- Lheal
binding protein
AAA34140.1 -3.14 chlorophyll a/b-binding protein Lhcal
P10708.11CB12_SOLLC -3.74 chlorophyll a-b binding protein 7, chloroplastic Lhca2
226872 prf| 11609235A -2.63 chlorophyll a/b binding protein Lhca3
CAK24966.1 -4.9 chlorophyll a/b binding protein Lhca4
XP_002284724.1 -3.41 predicted; hypothetical protein Lhca5
XP_002893588.1 -3.93 hypothetical protein ARALYDRAFT_473203 Lhebl
P27495.11CB24_TOBAC -3.52 chlorophyll a-b binding protein 40, chloroplastic Lhcbl
P27493.11CB22_TOBAC -3.72 chlorophyll a-b binding protein 21, chloroplastic Lhebl
P27492.11CB21_TOBAC -4.03 chlorophyll a-b binding protein 16, chloroplastic Lheb1
P07369.11CB2G_SOLLC -4.69 chlorophyll a-b binding protein 3C, chloroplastic Lhcb1
P27494.11CB23_TOBAC -4.45 chlorophyll a-b binding protein 36, chloroplastic Lhch2
ABG73416.1 -2.91 chloroplast pigment-binding protein CP24 Lheb2
AA062942.1 -3.78 chlorophyll a/b binding protein Lhcbh2
AA062942.1 -3.47 chlorophyll a/b binding protein Lhch2
P27489.11CB23_SOLLC -4.16 chlorophyll a-b binding protein 13, chloroplastic Lhcb3
ABG73415.1 -4.17 chloroplast pigment-binding protein CP29 Lhch4
ABG73417.1 -3.47 chloroplast pigment-binding protein CP26 Lhchb5
ABG73416.1 -3.94 chloroplast pigment-binding protein CP24 Lheb6
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Fig.4 The skechmap of photosynthesis in KEGG database ( a) ; Differential expression genes related photosynthesis of tobacco seedling
under chilling stress(b)
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Table 3 Information of differential expression genes related to photosynthesis of tobacco seedling under chilling stress

FEFE 1D gene 1D log,ratio i E INHE Putative function [& H {37 & Position
004397.11FENR2_TOBAC 1109  [femedoxin-NADP reductase, root-type isozyme, 1.18.1.2
chloroplastic
XP_002271630.1 -1.1 predicted; hypothetical protein 3.6.3.14/b
BAH11228.1 2.725 ATP synthase CFO C chain 3.6.3.14/¢
XP_002523293.1 2.194 ATP synthase delta chain, putative 3.6.3.14/DeltA
P32980.11ATPD_TOBAC -1.9 ATP synthase delta chain, chloroplastic 3.6.3.14/DeltA
YP_001936513.1 2.333 photosystem II 44 kDa protein PshC
ADD30625.1 11.42 photosystem II CP47 chlorophyll apoprotein PscB
AAP03871.1 -3.54 oxygen evolving complex 33 kDa photosystem II protein PsbO
CAA45699. 1 a2 f)imol;}[l)::emp;lypeptide of water-oxidizing complex of PebP
CAA44292 1 431 ij(;i]i)jgpclzilzzgde of photosystem II oxygen- PsbP
P18212.21PSBP2_TOBAC -2.43 oxygen-evolving enhancer protein 2-2, chloroplastic; PsbP
XP_002279556.1 -1.38 predicted; hypothetical protein PsbP
BAD97359.1 -3.33 PsbQ PsbQ
AAU03361.1 -2.65 photosystem II oxygen—evolving complex protein 3 PsbQ
Q40519.1PSBR_TOBAC -1.78 photosystem II 10 kDa polypeptide, chloroplastic; S PsbR
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FE[A% ID gene ID logyratio {5 HIHE Putative function E H 5[ Position
QOSMB4.11PSBS_TOBAC 1.039 rech-une; Full= Ph(.)tosystem II 22 kDa PebS
protein, chloroplastic
ACU13646.1 -3.49 unknown PsbW
XP_002285325.1 -2.02 predicted; hypothetical protein PsbY
YP_001109497.1 3.512 hypothetical protein Poptr_cp018 Pshz
BAA02871.1 -3.74 PS I -D1 precursor PsaD
P29302.11PSAD_NICSY -2.64 photosystem [ reaction center subunit I, chloroplastic; PsaD
Q41228.1 | PSAEA_NICSY -3.43 photosystem [ reaction center subunit chloroplastic; Psak
Q41229.11 PSAEB_NICSY -2.71 photosystem | reaction center subunit IV B, chloroplastic Psakl
AAP03872.1 -4.11 putative photosystem I subunit Il precursor Psal’
CBI39855.3 -2.2 unnamed protein product PsaG
BAA04634.1 -3.62 PS I -H precursor PsaH
AAP03873.1 -3.15 photosystem I reaction center subunit X psaK PsaK
AA085557.1 -2.87 photosystem I subunit XI PsalL
ACZ72945.1 -3 photosystem I reaction center subunit PsaN
CAB75430.1 -5.3 putative 16kDa membrane protein Psa0O
P06247.21CYB6_TOBAC 4.362 cytochrome b6 PetB
ACV32157.1 -2.64 chloroplast plastocyanin precursor petE
ACU15698.1 5.601 unknown PetF
XP_002275771.1 1.1 predicted; hypothetical protein isoform 2 PetF
004397.1 | FENR2_TOBAC 11 ferredoxin-NADP reductase, root-type isozyme, PetH

chloroplastic

2.2.4 IR A XTI KH 4 B RE 1 AR

5—7 C ARG M8 5 K326 %% 10 4 v 18185 58 %
BOABEH IR S RN B B E R LR E R
i EE AR Z —, 454 KEGG B
A I IR R 22 S S ARV EZE ] 5, R ARG
HAGEEIITH 4, £ 4 45050 RIESSEMEL
A H IR A G F 22 S Fe sk SE 3L 26 A4S, Horh
FREFRRRERNA 23 4,3 NFEEF T REEE, B
TR EER 5 A M H K- B il (GSTs) Ht
W R 3 AL Y R I S Ak U 7 I R 4

AT | - TR ) 7] i TR kM & it <5 Tl 2 11 A G 1Y)
B, H 54 H AR S5 R B (GST) AH G iy 2
A 13 A RET BRI, A BRIR AR
50.00% ; 23 Jbt H K B Ak 0 A 45 e H ik =z el i) A
il 2 e AL 8 A b B s AR Y 29.63% , H
W, APIC 55 PR (3 R B 55 O P46440. 1 1 GSTF2 _
TOBAC) [k 3 B IR FHE 1000 £%, C-
T(HEN B RS K CAA45741.1) Kk F] 500
i, ITE TG B 4 B PN T 1 4 B O A 240 G A 3% M o
HL) o e AR

x4 REMEBEEGESHERABERRZEENEXER

Table 4 Information of differential expression genes related to glutathione metabolism of tobacco seedling under chilling stress

FEF % 1D gene ID logyratio  {&:EJHE Putative function P& H {3 & Position
ACN35899.1 1.578  unknown 1.1.1.44
XP_002530803.1 1.801  6-phosphogluconate dehydrogenase, putative 1.1.1.44
CAA04992.1 3.75 glucose-6-phosphate dehydrogenase 1.1.1.49
CAA04994. 1 -3.11  glucose-6-phosphate dehydrogenase 1.1.1.49
P80461.11GSHRP_TOBAC 1.335  glutathione reductase, chloroplastic 1.8.1.7
AAL35365.11 AF442387_1 1.048  ascorbate peroxidase 1.11.1.11
ABX79340.1 1.838  cytosolic ascorbate peroxidase 1.11.1.11
BAA12918.1 1.343  cytosolic ascorbate peroxidase 1.11.1.11
Q9THX6.11TL29_SOLLC -1.74  thylakoid lumenal 29 kDa protein, chloroplastic 1.11.1.11
Q9FXS3.11GPX4_TOBAC 554 probable phospholipid hydroperoxide glutathione L1

peroxidase ;
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FEE 1D gene 1D log,ratio  {EE I HE Putative function & H {3 B Position
XP_002276256.1 1.008 predicted; hypothetical protein 1.11.1.9
CAES54353.1 -1.96 putative spermine synthase 2.5.1.16
048660.1 | SPDE_NICSY 2.48 spermidine synthase; Putrescine aminopropyltransferase 2.5.1.16
AAX20044.1 2.075 probable glutathione-S-transferase 2.5.1.18
ABQ96852.1 1.13 glutathione S-transferase 2.5.1.18
ADB85103.1 2.78 glutathione S-transferase omega 2.5.1.18
CAA45741.1 8.741 glutathione S-transferase C-7 2.5.1.18
CAJ13709.1 2.54 glutathione S-transferase 12 2.5.1.18
CBI15230.3 3.867 unnamed protein product 2.5.1.18
CBI32040.3 2.066 unnamed protein product 2.5.1.18
P25317.11GSTXA_TOBAC 3.37 probable glutathione S-transferase parA 2.5.1.18
P46440.11GSTF2_TOBAC 9.642 glutathione S-transferase APIC 2.5.1.18
P49332.11GSTXC_TOBAC 2.404 probable glutathione S-transferase parC; 2.5.1.18
Q03666.11GSTX4_TOBAC 3.794 probable glutathione S-transferase; PCNT107 2.5.1.18
XP_002305918.1 1.858 predicted protein 2.5.1.18
XP_002509786.1 1.094 glutathione-s-transferase theta, gst, putative 2.5.1.18
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Fig.5 Differential expression genes related to glutathione metabolism of tobacco seedling under chilling stress
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