DOI: 10.5846/stxb201306101617

顾婷婷, 许敏, 赵以军, 程凯.温度与 CO₂浓度升高对集胞藻 PCC 6803 修复 UV 损伤的关键基因转录量的影响.生态学报, 2015, 35(9): 3132-3137.

Gu T T, Xu M, Zhao Y J, Cheng K. Effects of increased CO₂ and elevated temperature on transcript levels of key ultraviolet damage repair genes in *Synechocystis* sp. PCC 6803. Acta Ecologica Sinica, 2015, 35(9): 3132-3137.

温度与 CO₂ 浓度升高对集胞藻 PCC 6803 修复 UV 损伤的关键基因转录量的影响

顾婷婷¹, 许 敏¹, 赵以军^{1, 2}, 程 凯^{1, 2, *}

1 华中师范大学生命科学学院,武汉 430079

2 湖北工业大学,资源与环境工程学院,河湖生态修复与藻类利用湖北省重点实验室,武汉 430068

摘要:通过 Taqman 探针绝对定量法研究了集胞藻 PCC 6803 在 5 种不同的环境条件下:(1)25℃+400µmol/mol CO₂,(2)29℃+400µmol/mol CO₂,(3)25℃+800µmol/mol CO₂,(4)29℃+800µmol/mol CO₂,(5)25℃+1200µmol/mol CO₂,其 *phrA/psbA1/psbA2/psbA*3 等 UV 修复基因和 16S rRNA 基因的转录本拷贝数的变化情况。结果表明:温度与 CO₂浓度的升高可以导致集胞藻 PCC 6803 的 *psbA2/psbA*3 基因和 16S rRNA 转录本拷贝数的大幅减少,说明温室效应将有可能导致蓝藻的 UV 损伤修复能力与核糖 体合成能力的下降;温度升高和 CO₂浓度升高对 *psbA2/psbA*3 基因和 16S rRNA 转录本拷贝数的大幅减少,说明温室效应将有可能导致蓝藻的 UV 损伤修复能力与核糖 体合成能力的下降;温度升高和 CO₂浓度升高对 *psbA2/psbA*3 基因和 16S rRNA 转录本拷贝数的表示 16S rRNA 转录本拷贝数的来合作用表现为互相抵消,说明

关键词:温度; CO₂浓度; 转录; phrA/psbA1/psbA2/psbA3

Effects of increased CO₂ and elevated temperature on transcript levels of key ultraviolet damage repair genes in *Synechocystis* sp. PCC 6803

GU Tingting¹, XU Min¹, ZHAO Yijun^{1,2}, CHENG Kai^{1,2,*}

1 College of Life Science, Central China Normal University, Wuhan 430079, China

2 College of Resources and Environmental Engineering, Key Laboratory of Ecological Remediation of Lakes and Rivers and Algal Utilization of Hubei Province, Hubei University of Technology, Wuhan 430068, China

Abstract: At the beginning of this century, the atmospheric CO_2 concentration had increased by 40% compared with that in the pre-industrial era, and at the end of this century it is expected to reach 550—900 µmol/mol. The temperature is also expected to increase by 1.6—7.0°C. To date, much research has focused on the effects of elevated CO_2 or/and elevated temperature on the growth, physiology, and ecology of cyanobacteria, but little is known about the combined effects of these factors on the ability of cyanobacteria to repair damage caused by ultraviolet (UV) radiation. In this study, *Synechocystis* sp. PCC6803 was grown for 15 weeks under five different conditions: (1) 25°C + 400 µmol/mol CO_2 (control group); (2) 29°C + 400 µmol/mol CO_2 ; (3) 25°C +800 µmol/mol CO_2 ; (4) 29°C + 800 µmol/mol CO_2 ; and (5) 25°C + 1200 µmol/mol CO_2 . Total RNA was extracted from cyanobacteria in each treatment, and was used to synthesize cDNA. Then, the transcript levels of four UV damage repair genes (*phrA/psbA1/psbA2/psbA3*) and the 16S *rRNA* gene were determined by Taqman absolute quantitative polymerase chain reaction. The results indicated that the transcript levels of 16S *rRNA* were 60%—85% lower in all the tested groups than in the control group. Except for the *phrA* gene in the 29°C + 400 µmol/mol

基金项目:国家自然科学基金(31200385); 三峡库区生态环境教育部工程研究中心开放基金(KF2013-06)

收稿日期:2013-06-10; 网络出版日期:2014-05-22

^{*} 通讯作者 Corresponding author.E-mail: chengkaicn@163.com

CO₂ treatment, all four UV damage repair genes showed transcript levels approximately 50% lower in all the treatments than in the control group. Our key findings were as follows: 1) Among the four UV damage repair genes, psbA2 showed the largest decrease in transcript levels in the treatments, followed by the psbA3 gene; 2) the combined effects of increased temperature and elevated CO, counteracted the effects of each individual factor on the transcript levels of the psbA3/psbA2 gene and the 16S rRNA gene. For instance, at 29°C, the transcript level of psbA3 was about 82% lower than that in the control group; at the CO, concentration of 800 µmol/mol, the transcript level of psbA3 was approximately 93% lower than that in the control group; however, the transcript level of psbA3 was only 73% lower than that in the control group in the 29°C + 800 µmol/mol CO₂ treatment. 3) When the CO₂ concentration increased from 800 to 1200 µmol/mol, there were marked decreases in the transcript levels of the four UV damage repair genes and the 16S rRNA gene. 4) Unlike psbA2/ psbA3, the transcription of the psbA1 gene is thought to be unaffected by environmental factors, except for microaerobic conditions. However, we found that the transcript level of psbA1 was 50% lower in the 29°C + 800 µmol/mol CO₂ treatment than in the control group. Taken together, our results indicate that the greenhouse effect will likely decrease the ability of cyanobacteria to repair UV damage and synthesize ribosomes. The effects of elevated CO₂ concentrations may be somewhat counteracted by increased temperatures. This is a topic worthy of further research. The transcript levels of the 16S rRNA gene significantly decreased under the elevated CO_2 concentrations and increased temperature in these experiments. Therefore, further experiments should be conducted to test its reliability before using it as an internal reference gene in studies on the effects of global change on gene expression in cyanobacteria.

Key Words: temperature; CO₂ concentration; transcription; phrA/psbA1/psbA2/psbA3

日光中的 UVB(ultraviolet-B)辐射对水生生物具有明显的伤害作用,特别是由于形成了环丁烷嘧啶二聚体(cyclobutane-pyrimidine dimers,CPD)和6-4光产物(6-4 photoproducts,6-4PPs)^[1],从而阻碍 DNA 复制与转录,影响蛋白质的功能,造成浮游植物(包括蓝藻)、大型藻类和其它水生植物的光合作用降低,甚至会对初级生产力产生严重影响^[1]。与此同时,为了抵消 UVB 对生物体的负面影响,很多水生生物都进化出了相应的保护、回避或修复机制,这些机制对于水生生物种群的维持和生态功能的发挥具有重要意义^[1]。

集胞藻 PCC 6803(*Synechocystis* sp. PCC 6803)是蓝藻光合作用研究的模式生物,其对 UV 损伤的修复机制主要体现在以下两个层面:在 DNA 水平上, *phrA* 基因编码的光聚酶(photolyase)能够直接修复损伤的 DNA^[2];在蛋白质水平上,D1 蛋白作为光系统 II (PS II)光反应中心的重要部件,同时也是 UV 损伤的关键位点,而在编码集胞藻 PCC 6803 D1 蛋白的 *psbA* 基因家族中, *psbA*2 和 *psbA*3 是 PS II UV 损伤修复的关键基因^[3], *psbA*1 在正常条件下则未检测到表达^[4]。

大气中的 CO₂是蓝藻光合作用的基本原料,其浓度变化对蓝藻的生长、生理及生态功能有着巨大影响^[5]。 至 21 世纪初,大气中的 CO₂浓度比工业化前增加了约 40%,并将在本世纪末达到 550—900µmol/mol^[6],届 时,全球气温将比工业化前升高 1.6—7.0℃^[7]。大气 CO₂浓度与温度同步升高将对蓝藻的生长、生理及生态 功能产生更为复杂的影响^[8],但目前关于这方面的研究主要集中于蓝藻的生长、细胞成份等方面^[8-10],而缺乏 有关大气 CO₂浓度与温度升高对蓝藻 UV 修复的联合作用的研究。本文以集胞藻 PCC 6803 为研究对象,采 用RT-qPCR技术探索了 CO₂浓度升高以及温度升高对其 UV 损伤修复基因转录量的影响,有助于推测全球气 候变化对蓝藻的 UV 损伤修复能力的影响,具有重要的生态学意义。

1 材料与方法

9期

1.1 藻种及其传代周期

集胞藻 PCC 6803 来源于中国科学院水生生物研究所,培养基为 BG-11^[11],光照强度为 1200 lx,采用静置 培养(每天手工摇动 1—2 次),光暗周期为 12:12。整个实验过程中每隔 2 周传代 1 次,传代后的初始藻细胞

密度为 5×10⁶个/mL,培养 1 周后达到对数期。

1.2 培养条件

本实验使用的自动控制培养箱可在箱体内控制 CO,浓度(并非向培养基中充气)和温度^[12]。本研究涉及 5 种处理:(1)25℃ + CO,浓度 400µmol/mol(CK 组),(2)29℃ + CO,浓度 400µmol/mol(温度升高组),(3) 25℃+ CO,浓度 800µmol/mol(CO,升高组1),(4)29℃+ CO,浓度 800µmol/mol(温室效应组),(5)25℃+ CO, 浓度 1200 µmol/mol(CO2升高组 2)。每组均设 3 平行。

1.3 转录本拷贝数的测定

1.3.1 样品的采集

于第7次传代后的第8天(此时集胞藻 PCC 6803 在上述各培养条件下培养的时长总计为15周)取对数 期藻液用于 RT-qPCR 检测,同时进行藻细胞计数。

1.3.2 RNA 的提取

取 50—100 mg 冷冻的液氮研磨至粉末状,置于 1.5 mL 离心管中,加入 1mL Trizol 充分匀浆,室温静置 5min;加入 0.2mL 氯仿,剧烈振荡 15s,静置 3min;4℃,12000r/min 离心 10min,取上清;加入 0.5mL 异丙醇,混 匀,冰上静置 20—30min;4℃,12000r/min 离心 10min,弃上清;加入 1mL 75% 乙醇洗涤沉淀后于室温放置晾 干,再加入适量的无 RNA 酶的双蒸水溶解^[13]。

1.3.3 cDNA 的合成

使用的是 BBI(波士顿生物技术公司)第一链 cDNA 合成试剂盒将获得的总 RNA 反转录合成 cDNA,于 -20℃保存待用。

1.3.4 qPCR

本研究采用 Taqman 探针法进行绝对定量 qPCR, 目的基因中 psbA 基因家族中的 3 个基因的引物均来源 于文献报道^[13],16S rRNA 和 phrA 基因的引物是通过 Table 1 Primers used for qPCR of Synechocystis sp. PCC6803 primer5.0 软件设计(表1)。

1.4 单个细胞中各目的基因的转录本拷贝数的计算

将样品中目的基因的总拷贝数(X₀)除以对应的藻 细胞密度,得到单个细胞中各目的基因的转录本的拷贝 数(A),其中 X_0 的计算方法如下^[14]:

 $\log X_0 = \log K - Ct \log(1 + En)$

式中,K为产物荧光信号达到设定阈值时扩增产物的 量;En 为扩增效率(通过质粒样品的标准曲线得到); X₀为起始模板量;Ct为产物荧光信号达到设定阈值时 的循环次数。

1.5 转录本拷贝数变幅的计算、作图与统计分析

各试验组单个细胞中转录本拷贝数相对于 CK 组 的变幅(V)的计算方法为:

$$V = (A_{\text{test}} - A_{\text{ck}}) / A_{\text{c}}$$

式中,A_{test}为各试验组中单个细胞中目的基因的转录本 拷贝数;A_{et}为 CK 组中单个细胞中目的基因的转录本拷 贝数。

作图使用的是 GraphPad Prism 5(误差线均用 SD 表示,n=3),统计分析采用 SPSS20.0 的 ANOVA 分析方

表1 用于集胞藻 PCC 6803 qPCR 的引物

基因名称 Gene name	引物方向与探针 Orientation and probe	引物序列(5'-3') Primer sequence(5'-3')
16S rRNA	上游	AAAGCGTCCGTAGGTGGTTAT
	下游	GTCCCTCAGTGTCAGTTTCAGC
	探针	CCCAGTGTAGCGGTGAAATGCGTA
phrA	上游	AAAGCGAGATTTAGCAGTGGC
	下游	CCAAAAGGGAGTGTAAACCGT
	探针	ATCGCCACGGAATGGGATCAACTCA
psbA1	上游	AGCTTAAACCCAAAATCTTACTTCGT
	下游	CCATCAGAGAAGGAGCCTTGACCA
	探针	CAAAGCCTGTGGTCACGGTTCTGTT

探针 CCCGTTGCTGGTTCTTTGCTTTAC GAGCTTGAGGCCAAATCCTTTGAACA psbA3 上游 下游 CCATCAGAGAAGGAGCCTTGACCA 探针 TTCCTTGCTCTACGGTAACAACATCATC qPCR 的总体系为 25µL:12.5µL HS qPCR Master Mix(2X),0.5µL 引物 F(20µmol/L), 0.5µL 引物 R(20µmol/L), 0.5µL 探针 P(20µmol/L), 9µLddH2O,2µLcDNA 模板;PCR 循环的条件为:95℃ 2 min 变性后进行 40 个循环(95℃ 10 s,60℃ 1min)

CCTTTAGACTAAGTTTAGTTCCA

CCATCAGAGAAGGAGCCTTGACCA

psbA2

上游

下游

法(其多重比较采用 LSD 法)。

2 结果和分析

2.1 16S rRNA 转录本拷贝数的变化

表2是单个细胞中各目的基因的转录本拷贝数。

表 2 不同条件下单个细胞中各目的基因的平均转录本拷贝数(平均值±SD)

$\label{eq:table2} Table \ 2 The \ average \ transcripts \ amount \ of \ the \ target \ genes \ of \ each \ cell \ in \ different \ conditions \ (\ mean \pm SD)$							
实验组 Groups	16S rRNA	phrA	psbA1	psbA2	psbA3		
СК	365.45±73.84	0.25 ± 0.05	0.22 ± 0.06	20.89±0.70	21.67±4.12		
温度升高组 Elevated temperature	68.67±2.12	0.25 ± 0.03	0.14 ± 0.03	2.13±0.17	3.78±0.69		
CO2升高组 1 Elevated CO2 1	56.17±5.13	0.02 ± 0.00	0.03 ± 0.02	0.85 ± 0.09	1.47±0.53		
温室效应组 Greenhouse effect	158.22±19.52	0.13 ± 0.02	0.10 ± 0.03	3.29 ± 0.51	5.72±1.42		
CO2升高组 2 Elevated CO2 2	79.65±11.27	0.06 ± 0.00	0.05 ± 0.02	2.55 ± 0.44	3.93±0.69		

phrA:光聚酶编码基因;psbA1、psbA2、psbA3:D1蛋白编码基因

根据表 2,得到各试验组 16S rRNA 转录本拷贝数相对于 CK 组的变幅如图 1 所示:各试验组的 16S rRNA 转录本拷贝数都发生了不同程度的下调,其中下调幅度最大的为 CO2升高组 1(约 85%),而下调幅度最小的 为温室效应组(约60%)。

2.2 phrA/psbA1/psbA2/psbA3 基因转录本拷贝数的变化

根据表 2,得到各试验组 phrA/psbA1/psbA2/psbA3 基因转录本拷贝数相对于 CK 组的变幅如图 2 所示。

转录量

Fig.2 The transcripts variation of phrA/psbA1/psbA1/psbA3 of each cell in different conditions

phrA:光聚酶编码基因;psbA1、psbA2、psbA3:D1蛋白编码基因

由图 2 可见,除了温度升高组的 phrA 基因外,其它情况下各 UV 修复基因的转录本拷贝数都发生了明显 下调,平均下调幅度约50%,且表现出了以下特点:1)各试验组中4种基因的转录本拷贝数的下调幅度差异 显著(P<0.05),且均以 psbA2 基因转录量的下调幅度最大, psbA3 基因的下调幅度仅略小于 psbA2 基因; 2)温 度升高与 CO₂浓度升高对 psbA3/psbA2 基因转录本拷贝数下调的联合作用结果表现为互相抵消,如:温度升高 组中 psbA3 基因的降幅为 82% 左右, CO2浓度升高组 1 中 psbA3 基因的降幅为 93% 左右, 但在温室效应组中 psbA3 基因的降幅却仅为 73% 左右, 16S rRNA 也表现出了类似的现象(图 1)。3) 通过对比 CO2升高组 1 与 CO2升高组2的结果,发现CO2浓度的持续升高不但不能进一步增加各基因转录本数的下调幅度,而且会导致 各基因转录本拷贝数的下调幅度的明显减少,16S rRNA 也表现出了类似的现象(图1)。

3 讨论

本研究发现 CO₂浓度升高时,集胞藻 PCC 6803 的 16S rRNA 基因与关键 UV 修复基因转录本的拷贝数均 明显减少。Baosheng Qiu 等人的研究显示 CO₂浓度加倍虽然会导致铜绿微囊藻生物量的增加 52%—77%,但 是多糖的合成却会减少^[10]。此外,也有研究表明加倍的 CO₂浓度和同步的温度升高将虽然会使海洋聚球藻 的藻胆素含量、叶绿素 a 含量和光合速率大幅提高^[8],但这些效应在原绿球藻中却不存在^[8],说明不同的微 藻对 CO₂浓度以及温度的响应机制是存在较大差异的。

正常条件下,集胞藻 PCC 6803 中 *psbA*2 的转录本拷贝数占 *psbA* 转录本总拷贝数的 90%^[4]。有证据表 明,作为 PS II UV 损伤修复关键基因的 *psbA*2/*psbA*3 基因,其转录本拷贝数的下调会导致集胞藻 PCC 6803UV 损伤修复能力的下降^[4]。集胞藻 PCC 6803 中 *phrA* 基因在正常情况下的表达量虽很低,但是其表达产物对 UV 辐射造成的 DNA 损伤的修复却起着至关重要的作用^[15-16],而且蓝藻对 PS II 的 UV 损伤的修复能力也会 受到光聚酶的修复能力的影响^[17]。因此,本研究所观察到的 *psbA*2/*psbA*3/*phrA* 基因转录本拷贝数大幅下调 的现象预示着温室效应将有可能导致蓝藻的 UV 损伤修复能力的下降,这意味着表层水中蓝藻因 UV 损伤而 死亡或生长变慢的可能性会增加,而臭氧层破坏所导致的全球地表紫外线的增强将使这一可能性进一步提 高^[1],但是考虑到 CO₂和温度的升高同时也会明显的刺激藻类的生长^[8],所以其综合效应(特别是考虑到不 同微藻对 CO₂,水温的响应幅度还存在差异^[8])仍难以准确判断。

与 psbA2/psbA3 基因不同, psbA1 基因由于表达量极低,其功能通常被忽视^[4],目前发现该基因仅在微氧条件^[13]下有微量表达,其余基本上不受环境变化的影响,而本研究发现,各实验组中 psbA1 基因转录本的拷贝数均明显下调,其中温室效应组的下调幅度超过 50%,说明 psbA1 基因的转录量有可能随着全球气候变化而改变。

核糖体是生物体发挥正常生理功能的基础,16S rRNA 基因也是 RT-qPCR 技术中的常用内参基因^[18],但是,本研究却发现集胞藻 PCC 6803 中该基因的表达量在温室效应条件下会明显下降,这可能与细胞生长状态的改变有关^[19]。上述结果一方面说明温室效应将可能影响蓝藻的核糖体合成,另一方面也说明在研究蓝藻的基因转录量时,应慎重采用 16S rRNA 基因作为 RT-qPCR 的内参基因^[20]。

本研究表明,温度升高与 CO₂浓度升高对 16S rRNA 及 *psbA2/psbA*3 基因转录本拷贝数的联合作用表现为 互相抵消,说明温度升高与 CO₂浓度升高的联合作用的机制比较复杂^[8],需要通过试验进行研究而不能简单 相加。

综上所述:温度与 CO₂浓度的升高可以导致集胞藻 PCC 6803 的 *psbA2/psbA3* 基因和 16S rRNA 转录本拷 贝数的大幅减少,说明温室效应将有可能导致蓝藻的 UV 损伤修复能力与核糖体合成能力的下降;温度升高 和 CO₂浓度升高对 *psbA2/psbA3* 基因和 16S rRNA 转录本拷贝数的联合作用表现为互相抵消,说明温度升高与 CO₂浓度升高的联合作用的机制较复杂,值得深入研究。

参考文献(References):

- [1] Hader D P, Helbling E W, Williamson C E, Worrest R C. Effects of UV radiation on aquatic ecosystems and interactions with climate change. Photochemical and Photobiological Sciences, 2011, 10(2): 242-260.
- [2] Eker A P, Kooiman P, Hessels J K, Yasui A. DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans. Journal of Biological Chemistry, 1990, 265(14): 8009-8015.
- [3] Renu M, Vashudha P J, Swapan K, Bhattacharjee. psbA gene family coding D1 proteins of photosystem II of cyanobacteria Synechocystis PCC 6803 is essential for DNA repair/protection. Current Science, 2011, 100(1); 58-68.
- [4] Mulo P, Sicora C, Aro E M. Cyanobacterial *psbA* gene family: optimization of oxygenic photosynthesis. Cellular and Molecular Life Sciences, 2009, 66(23): 3697-3710.
- [5] Behrenfeld M J, Robert T O, David A S, Charles R M, Jorge L S, Gene C F, Allen J M, Paul G F, Ricardo M L, Emmanuel S B. Climate-driven

trends in contemporary ocean productivity. Nature, 2006, 444(7120): 752-755.

- [6] Lindroth R L. Impacts of elevated atmospheric CO₂ and O₃ on forests: phytochemistry, trophic interactions, and ecosystem dynamics. Journal of Chemical Ecology, 2010, 36(1): 2-21.
- [7] Intergovernmental Panel on Climate Change. Climate Change: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, 2007.
- [8] Fu F X, Warner M E, Zhang Y H, Feng Y Y, Hutchins D A. Effects of increased temperature and CO₂ on photosynthesis, growth, and elemental ratios in marine *Synechococcus* and *Prochlorococcus* (Cyanobacteria). Journal of Phycology, 2007, 43(3): 485-496.
- [9] Fu F X, Mulholland M R, Garcia N S, Beck A, Bernhardt P W, Warner M E, Sa udo-Wilhelmy S A, Hutchins D A. Interactions between changing pCO₂, N₂ fixation, and Fe limitation in the marine unicellular cyanobacterium *Crocosphaera*. Limnology and Oceanography, 2008, 53 (6): 2472-2484.
- [10] Qiu B S, Gao K S. Effects of CO₂ enrichment on the bloom-forming cyanobacterium *Microcystis aeruginosa* (cyanophyceae): physiological responses and relationships with the availability of dissolved inorganic carbon. Journal of Phycology, 2002, 38(4): 721-729.
- [11] Stanier R Y, Kunisawa M M, Cohen B G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews, 1971, 35(2): 171-205.
- [12] 牛晓莹, 程凯, 荣茜茜, 许敏, 赵以军, 赵进. CO₂浓度和温度升高对噬藻体 PP 增殖的联合作用. 生态学报, 2012, 32(22): 6917-6924.
- [13] Sicora C I, Ho F M, Salminen T, Styringc S, Aroa E M. Transcription of a "silent" cyanobacterial *psbA* gene is induced by microaerobic conditions. Biochimicaet Biophysica Acta, 2009, 1787(2): 105-112.
- [14] 唐永凯, 贾永义. 荧光定量 PCR 数据处理方法的探讨. 生物技术, 2008, 18(3): 47-56.
- [15] Ng W O, Pakrasi H R. DNA photolyase homologs are the major UV resistance factors in Synechocystis sp. PCC 6803. Molecular and General Genetics, 2001, 264(6): 924-970.
- [16] Ng W O, Zentella R, Wang Y, Taylor J S, Pakrasi H B. phrA, the major photoreactivating factor in the cyanobacterium Synechocystis sp. strain PCC 6803 codes for a cyclobutane-pyrimidine-dimer-specific DNA photolyase. Archives of Microbiology, 2000, 173(5/6): 412-417.
- [17] Vass I Z, Kos P B, Sass L, Nagy C I, Vass I. The ability of cyanobacterial cells to restore U-VB radiation induced damage to photosystem II is influenced by photolyase dependent DNA repair. Photochemistry and Photobiology, 2013, 89(2): 384-390.
- [18] Devers M, Soulas G, Martin-Laurent F. Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. Journal of Microbiological Methods, 2004, 56(1): 3-15.
- [19] Nolan T, Hands R E, Bustin S A. Quantification of mRNA using real-time RT-PCR. Natural Protocols, 2006, 1(3): 1559-1582.
- [20] Rueckert A, Cary S C. Use of an armored RNA standard to measure microcystin synthetase E gene expression in toxic *Microcystis sp.* by reversetranscription qPCR. Limnology Oceanography Methods, 2009, 7: 509-520.