
在这样版 Acta Ecologica Sinica

中国生态学学会 2013 年学术年会专辑

第33卷 第18期 Vol.33 No.18 **2013**

中国生态学学会中国科学院生态环境研究中心 斜 孝 忠 版 私

主办

出版

生态学报

(SHENGTAI XUEBAO)

第 33 卷 第 18 期 2013 年 9 月 (半月刊)

目 次

中国生态学学会 2013 年学术年会专辑 卷首语
美国农业生态学发展综述 ······ 黄国勤, Patrick E. McCullough (5449)
水足迹研究进展
江西省主要作物(稻、棉、油)生态经济系统综合分析评价
植物干旱胁迫下水分代谢、碳饥饿与死亡机理 董 蕾,李吉跃 (5477)
生态化学计量学特征及其应用研究进展 曾冬萍,蒋利玲,曾从盛,等 (5484)
三峡库区紫色土植被恢复过程的土壤团粒组成及分形特征 王轶浩,耿养会,黄仲华(5493)
城市不同地表覆盖类型对土壤呼吸的影响 付芝红,呼延佼奇,李 锋,等 (5500)
华南地区3种具有不同入侵性的近缘植物对低温胁迫的敏感性 王宇涛,李春妹,李韶山 (5509)
沙丘稀有种准噶尔无叶豆花部综合特征与传粉适应性 施 翔,刘会良,张道远,等 (5516)
水浮莲对水稻竞争效应、产量与土壤养分的影响 申时才,徐高峰,张付斗,等 (5523)
珍稀药用植物白及光合与蒸腾生理生态及抗旱特性 吴明开,刘 海,沈志君,等 (5531)
不同温度及二氧化碳浓度下培养的龙须菜光合生理特性对阳光紫外辐射的响应
土壤氧气可获得性对双季稻田温室气体排放通量的影响 秦晓波,李玉娥,万运帆,等 (5546)
免耕稻田氮肥运筹对土壤 NH3挥发及氮肥利用率的影响 马玉华,刘 兵,张枝盛,等 (5556)
香梨两种树形净光合速率特征及影响因素 孙桂丽,徐 敏,李 疆,等 (5565)
沙埋对沙米幼苗生长、存活及光合蒸腾特性的影响 赵哈林,曲 浩,周瑞莲,等 (5574)
半干旱区旱地春小麦全膜覆土穴播对土壤水热效应及产量的影响 王红丽,宋尚有,张绪成,等 (5580)
基于 Le Bissonnais 法的石漠化区桑树地埂土壤团聚体稳定性研究 汪三树,黄先智,史东梅,等 (5589)
不同施肥对雷竹林径流及渗漏水中氮形态流失的影响 陈裴裴,吴家森,郑小龙,等 (5599)
黄土丘陵区不同植被土壤氮素转化微生物生理群特征及差异 邢肖毅,黄懿梅,安韶山,等 (5608)
黄土丘陵区植被类型对土壤微生物量碳氮磷的影响 赵 彤,闫 浩,蒋跃利,等 (5615)
林地覆盖对雷竹林土壤微生物特征及其与土壤养分制约性关系的影响
降雨对草地土壤呼吸季节变异性的影响 王 旭,闫玉春,闫瑞瑞,等 (5631)
基于土芯法的亚热带常绿阔叶林细根空间变异与取样数量估计 黄超超,黄锦学,熊德成,等 (5636)
4 种高大树木的叶片性状及 WUE 随树高的变化 何春霞,李吉跃,孟 平,等 (5644)
干旱荒漠区银白杨树干液流动态 张 俊,李晓飞,李建贵,等 (5655)
模拟增温和不同凋落物基质质量对凋落物分解速率的影响 刘瑞鹏,毛子军,李兴欢,等 (5661)
金沙江干热河谷植物叶片元素含量在地表凋落物周转中的作用 闫帮国,纪中华,何光熊,等 (5668)
温带 12 个树种新老树枝非结构性碳水化合物浓度比较 张海燕,王传宽,王兴昌 (5675)
断根结合生长素和钾肥施用对烤烟生长及糖碱比、有机钾指数的影响 … 吴彦辉,薛立新,许自成,等 (5686)
光周期和高脂食物对雌性高山姬鼠能量代谢和产热的影响 高文荣,朱万龙,孟丽华,等 (5696)
绿原酸对凡纳滨对虾抗氧化系统及抗低盐度胁迫的影响 王 芸,李 正,李 健,等 (5704)

```
基于盐分梯度的荒漠植物多样性与群落、种间联接响应 …………… 张雪妮,吕光辉,杨晓东,等(5714)
广西马山岩溶植被年龄序列的群落特征………………………………… 温远光,雷丽群,朱宏光,等 (5723)
戴云山黄山松群落与环境的关联…………………………………………… 刘金福,朱德煌,兰思仁,等 (5731)
四川盆地亚热带常绿阔叶林不同物候期凋落物分解与土壤动物群落结构的关系.....
  ···············王文君,杨万勤,谭 波,等 (5737)
中亚热带常绿阔叶林不同演替阶段土壤活性有机碳含量及季节动态…… 范跃新,杨玉盛,杨智杰,等 (5751)
塔克拉玛干沙漠腹地人工植被及土壤 CNP的化学计量特征 ...... 李从娟,雷加强,徐新文,等 (5760)
鄱阳湖小天鹅越冬种群数量与行为学特征…………………… 戴年华,邵明勤,蒋丽红,等(5768)
营养盐加富和鱼类添加对浮游植物群落演替和多样性的影响………… 陈 纯,李思嘉,肖利娟,等(5777)
西藏达则错盐湖沉积背景与有机沉积结构…………………………… 刘沙沙, 贾沁贤, 刘喜方, 等 (5785)
西藏草地多项供给及调节服务相互作用的时空演变规律………… 潘 影,徐增让,余成群,等 (5794)
太湖水体溶解性氨基酸的空间分布特征………………… 姚 昕,朱广伟,高 光,等 (5802)
基于遥感和 GIS 的巢湖流域生态功能分区研究.............................. 王传辉,吴 立,王心源,等 (5808)
近 20 年来东北三省春玉米物候期变化趋势及其对温度的时空响应 …… 李正国,杨 鹏,唐华俊,等(5818)
鄱阳湖湿地景观恢复的物种选择及其对环境因子的响应…………… 谢冬明,金国花,周杨明,等(5828)
珠三角河网浮游植物生物量的时空特征……………………………… 王 超,李新辉,赖子尼,等 (5835)
川西亚高山-高山土壤表层有机碳及活性组分沿海拔梯度的变化 ...... 秦纪洪 王 琴 孙 辉 (5858)
城市森林碳汇及其抵消能源碳排放效果——以广州为例………… 周 健,肖荣波,庄长伟,等(5865)
基于机器学习模型的沙漠腹地地下水含盐量变化过程及模拟研究…… 范敬龙,刘海龙,雷加强,等 (5874)
干旱区典型绿洲城市发展与水资源潜力协调度分析 …………… 夏富强,唐 宏,杨德刚,等 (5883)
中街山列岛海洋保护区鱼类物种多样性 ...... 梁 君,徐汉祥,王伟定 (5905)
丰水期长江感潮河口段网采浮游植物的分布与长期变化…………… 江志兵,刘晶晶,李宏亮,等(5917)
基于生态网络的城市代谢结构模拟研究——以大连市为例………… 刘耕源,杨志峰,陈 彬,等(5926)
保护区及周边居民对野猪容忍性的影响因素——以黑龙江凤凰山国家级自然保护区为例………………
  ··············徐 飞,蔡体久,琚存勇,等 (5935)
三江源牧户参与草地生态保护的意愿...... 李惠梅,张安录,王 珊,等 (5943)
沈阳市降雨径流初期冲刷效应…………………………… 李春林,刘 淼,胡远满,等 (5952)
期刊基本参数:CN 11-2031/Q * 1981 * m * 16 * 514 * zh * P * ¥ 90. 00 * 1510 * 59 * 2013-09
```

封面图说:川西高山地带土壤及植被——青藏高原东缘川西的高山地带坡面上为草地,沟谷地带由于低平且水分较充足,生长有很多灌丛。川西地区大约在海拔 4000m 左右为林线,以下则分布有亚高山森林。亚高山森林是以冷、云杉属为建群种或优势种的暗针叶林为主体的森林植被。作为高海拔低温生态系统,高山-亚高山地带土壤碳被认为是我国重要的土壤碳库。有研究表明,易氧化有机碳含量与海拔高度呈显著正相关,显示高海拔有利于土壤碳的固存。因而,这里的表层土壤总有机碳含量随着海拔的升高而增加。

彩图及图说提供:陈建伟教授 北京林业大学 E-mail:cites.chenjw@163.com

Vol.33, No.18

DOI: 10.5846/stxb201305060946

夏富强,唐宏,杨德刚,武广洋.干旱区典型绿洲城市发展与水资源潜力协调度分析.生态学报,2013,33(18):5883-5892.

Xia F Q, Tang H, Yang D G, Wu G Y. Analysis of coordination degree between urban development and water resources potentials in arid oasis city. Acta Ecologica Sinica, 2013, 33(18):5883-5892.

干旱区典型绿洲城市发展与水资源潜力协调度分析

夏富强1,唐 宏2,*,杨德刚1,武广洋1

(1. 中国科学院新疆生态与地理研究所, 乌鲁木齐 830011;

2. 四川农业大学经济管理学院 四川省农村发展研究中心,成都 611130)

摘要:基于1995—2010年城市发展与水资源开发利用现状,构建了城市发展与水资源潜力的综合评价模型及二者的协调度模 型,以探讨乌鲁木齐城市发展及水资源潜力的变化与二者的协调关系。结论如下:(1)乌鲁木齐市的城市发展综合水平基本呈 逐年上升趋势,其中经济发展与人口增长是乌鲁木齐城市发展的主要形式,社会进步和空间扩张对城市综合发展的影响相对较 小。(2)水资源开发利用潜力的变化波动性较强,总体呈现下降趋势,主要受水资源本底条件变化的影响,水资源利用效率和 管理能力的提高则促进水资源潜力的提升。(3)城市发展与水资源系统的协调度先升后降,呈倒 U 字型变化,总体二者的协调 发展度不高,城市发展系统和水资源系统的矛盾日渐突出。

关键词:城市发展;水资源潜力;协调度;绿洲城市;乌鲁木齐

Analysis of coordination degree between urban development and water resources potentials in arid oasis city

XIA Fuqiang¹, TANG Hong^{2,*}, YANG Degang¹, WU Guangyang¹

- 1 Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- 2 Agricultural Development Research Center of Sichuan, College of Economics and Management, Sichuan Agricultural University, Chengdu 611130, China

Abstract: With the acceleration of urbanization and globalization of economy, the relationship between economy, resources, ecosystem and environment has attracted extensive attention. In the arid area of northwest China, the oasis urban development has been strongly restricted by water resources shortage and fragility of ecosystem and environment. Based on data about urban development and water resources of Urumuqi from 1995 to 2010, the relationship between urban development and water resources potentials was discussed in this study, which important for sustainability of oasis economy, society, ecosystem and environment in arid areas.

First, sixteen indexes of population, economy, society and space were used to characterize the level of urban development, and fifteen indexes from natural background, exploitation, utilization efficiency and management of water resources were selected to quantify water resources potential. The weights of indexes were determined using AHP based on entropy theory. Then comprehensive evaluation models were built to analyze the change of urban development level and water resources potential. At last, the model describing coordination degree between urban development and water resource potential was constructed and improved repeatedly to quantitatively evaluate the coordination relationship of Urumqi city.

This study showed that: (1) the urban development level of Urumqi increased from 0.0771 of 1995 to 0.9263 of 2010. The rapid increases of urban population and GDP caused significant increase of comprehensive level of urban development whereas the social progress and expansion of the urban space had relatively small impact. (2) Water resources potential showed an overall downward trend with fluctuation. Comprehensive index of water resources potential dropped from 0.4722 of

基金项目:中国科学院"西部之光"人才培养计划(RCPY201003);中国科学院知识创新工程重要方向课题(Y00Q0600SB);国家 973 计划 (2010CB951004)

收稿日期:2013-05-06; 修订日期:2013-07-08

^{*}通讯作者 Corresponding author. E-mail: tanghongwa@ 126.com

1995 to 0.3520 of 2010. The natural background of water resources was the main factor affecting water resources potential. Over-exploitation of groundwater resources caused significant increase of degree of water resources exploitation, and thus the decrease of water resources potential. The improvement of utilization efficiency and management enhanced water resources potential. (3) The coordination degree between urban development and water resource systems increased first and decreased afterwards. Generally, the coordination degree in the past years was low and the conflict between the two systems has been intensified.

Key Words: urban development; water resources potentials; coordination degree; oasis city; Urumqi

随着经济全球化和城市发展进程的加快,城市经济与资源、生态、环境的关系越来越受到社会的广泛关注^[1],尤其西北干旱区的城市发展受到水资源短缺和生态环境脆弱的多重胁迫,水资源成为绿洲城市发展的重要约束条件。国内外学者就水资源对城市化进程、城市布局、社会经济发展的影响机制^[2-4],城市化对水资源环境质量的影响^[5],城市化中的水资源管理问题^[1,6-7],城市节水发展策略^[8]等作了深入的研究和探讨。我国的相关研究以西北干旱区水资源与城市发展问题研究居多,在水资源与城市空间扩张、人口集聚、经济增长相互作用研究^[9-11],城市化进程中的水资源承载力研究^[12],水资源与城镇空间组织的关系研究^[13],水资源约束下城市发展策略研究^[14-16]等方面取得了较为显著的成就。绿洲城市发展加速水资源开发利用,水资源开发潜力也影响城市发展速度,在可利用水资源条件下的城市适宜发展速度与发展方式,保障城市发展健康和谐、水资源合理开发利用,显得尤为重要。因此,本文基于西部典型的干旱缺水城市乌鲁木齐城市发展与水资源开发利用状况,对乌鲁木齐城市发展-水资源潜力的协调度及整体发展水平进行评价。这对于维护干旱区绿洲经济、社会和生态环境的可持续发展具有重要的理论和现实意义。

1 研究方法

1.1 研究区概况

乌鲁木齐市深处大陆腹地,天山北麓中段,准噶尔盆地南缘,东、南、西三面环山,地势南高北低,兼具山地城市和平原城市的特点,属典型的干旱区绿洲城市(图1)。区域多年平均降水量为28.1474×10⁸ m³,水资源总量为9.3922×10⁸ m³。降水稀少且四季分布不均,降水量自东向西逐渐减少。

乌鲁木齐市是全疆的政治、经济、文化和科技中心,是经济高速发展、人口密集的特大城市和国家重点发展区域天山北坡经济区的中心城市,已成为中国扩大向西开放、开展对外经济文化交流的重要窗口。2011年全市总人口249.35万人,地区生产总值为1690.03亿元,占新疆地区生产总值的25.57%,三次产业结构比例为1.31:44.91:53.78。近年来乌鲁木齐市水资源严重衰竭,水污染加剧,使水资源的环境容量和承载能力大大降低,严重制约了社会经济的可持续发展。国家西部大开发战略的实施,以及天山北坡经济区被纳入战略,决定着乌鲁木齐市将进入大规模开发和建设的新时期,人口与环境、经济与发展都对乌鲁木齐市的水资源开发利用提出了更高要求。

1.2 评价指标选择与体系构建

城市发展系统与水资源系统的交互耦合形成复杂的复合系统,结合乌鲁木齐市实际情况,按照科学性、系统性和实用性原则,参考前人可持续发展指标体系的构建方法^[17-19],从城市人口、城市经济、城市社会和城市空间等 4 个方面选择了 16 个指标表征城市发展水平、从水资源的本底条件、开发程度、利用效率、管理能力等 4 个方面选择了 15 个指标表征水资源潜力,构建了由目标层、系统层、指标层构成的城市发展-水资源潜力协调度评价指标体系(表 1)。

1.3 数据获取与权重计算

城市发展系统和水资源系统的各指标数据,来源于历年新疆统计年鉴、乌鲁木齐统计年鉴、乌鲁木齐市水资源公报、新疆城市(县城)建设统计年报。为使数据可比,经济指标数据折算为1978年可比价。为消除数据的数量级、量纲及指标正负取向不同所造成的影响,采取极差标准化方法对数据进行标准化处理,并对逆向指标进行变向处理^[20-22]。

由于城市发展系统与水资源系统之间复杂的非线性关系,采用熵技术支持下的层次分析法(AHP)确定各指标的权重^[23-24]。计算公式为:

$$\alpha_{j} = V_{j} W_{j} / \left(\sum_{j=1}^{n} V_{j} W_{j} \right) \tag{1}$$

式中, α_j 为熵技术支持下的 AHP 法求出的指标权重, W_j 为采用 AHP 法求出的指标权重, V_j 为指标的信息权重。AHP 方法与熵值法计算公式详见参考文献^[21,25]。计算得到的指标权重如表 1。

1.4 协调度评价模型构建

设正数 U_1, U_2, \dots, U_n 为描述城市发展的 m 个指标,正数 W_1, W_2, \dots, W_n 为描述水资源潜力的 n 个指标。

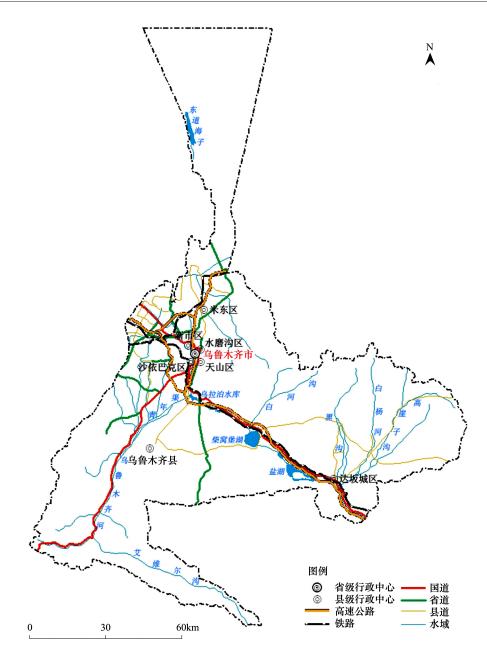


图 1 乌鲁木齐市行政区划示意图

Fig.1 Diagram of administrative division in Urumqi

$$f(U) = \sum_{j=1}^{m} a_j U_j \tag{2}$$

$$f(U) = \sum_{j=1}^{m} a_j U_j$$

$$g(W) = \sum_{j=1}^{n} b_j W_j$$
(2)

式中,f(U)为城市发展综合评价函数,g(W)为水资源潜力综合评价函数 $^{[26]}$ 。 a_j 、 b_j 为各指标权重, U_j 与 W_J 均为经过标准化与 变向后的数据。根据此公式,可计算出乌鲁木齐市各年的城市发展综合指数与水资源潜力综合指数。

为评价乌鲁木齐城市发展程度与水资源潜力的协调水平,根据城市发展综合评价与水资源潜力综合评价结果,构造了城市 发展-水资源潜力协调度模型予以定量评价。公式如下:

$$C_{i} = \left\{ \frac{f(U_{i}) \times g(W_{i})}{\left[\frac{f(U_{i}) + g(W_{i})}{2}\right]^{2}} \right\}^{\kappa}$$

$$\tag{4}$$

式中, C_i 为年份i的协调度, $f(U_i)$ 为年份i的城市发展综合指数, $g(W_i)$ 为年份i的水资源潜力综合指数,K为调节系数,用来对

城市发展程度与水资源潜力之间进行组合协调,一般 $K \ge 2^{[27]}$ 。 $0 \le C \le 1$,C 值越大,表明 $f(U_i)$ 与 $g(W_i)$ 之间的离差越小,城市发展系统与水资源利用系统越协调。

C 值可以用来判断城市发展程度与水资源开发潜力的协调性,但无法描述两个系统的发展水平。为更全面反映城市发展程度与水资源潜力的协调程度,利用 $C_{s}(U)$ 和 g(W) 再构造协调发展度函数:

$$T_i = \alpha f(U_i) + \beta g(W_i) \tag{5}$$

$$D_i = \sqrt{C_i \times T_i} \tag{6}$$

式中, T_i 为年份i的城市发展与水资源潜力综合评价指数,反映城市发展与水资源潜力的整体水平; D_i 为年份i的协调发展度,是考察区域协调度与整体发展水平的综合指标; α , β 为权重。 $0 \le T \le 1$,T 越大,表明城市发展与水资源系统的整体水平越高; $0 \le D \le 1$,D 越大,表明区域的协调发展程度越高。由于城市发展水平与水资源潜力同等重要,考虑两个相对独立系统之间的协调关系,计算 T 值时 α β 均取 $0.5^{[28]}$ 。

表 1 城市发展-水资源潜力协调发展评价指标体系及权重分配

Table 1 The valuate systems and weight distribution of urban development and water resources potential

目标层 Target layer	系统层 System layer	子系统层 Subsystem layer	权重 Weight	指标层 Index layer	AHP 法权重 <i>W_j</i> AHP weight	熵值法权重 V_j Entropy weight	最终权重 $lpha_j$ General weight	方向 Direction
城市发展-水资	城市发展综合指数	城市人口	0.2897	U11人口密度	0.0380	0.0571	0.0373	正
源潜力协调度				U ₁₂ 非农产业从业人员数	0.0686	0.0962	0.1136	正
Coordination degr	ee			U ₁₃ 非农人口比重	0.0805	0.0386	0.0534	正
between urban				U ₁₄ 城镇人口比重	0.1026	0.0695	0.1228	正
development and		城市经济	0.4236	U ₂₁ 人均 GDP	0.1634	0.0674	0.1895	正
water resources				U ₂₂ 建成区经济密度	0.1079	0.0303	0.0562	正
potentials				U23非农产业产值比重	0.1069	0.0370	0.0680	正
				U ₂₄ 工业全员劳动生产率	0.0454	0.0789	0.0616	正
		城市社会	0.1652	U31城镇居民人均可支配收入	0.0746	0.0453	0.0581	正
				U32恩格尔系数	0.0474	0.0304	0.0248	逆
				U33万人拥有医生数	0.0253	0.0178	0.0078	正
				U34人均用电量	0.0179	0.0625	0.0193	正
		城市空间	0.1215	U41万人拥有建成区面积	0.0310	0.0792	0.0423	正
				U42建成区面积比重	0.0489	0.0908	0.0765	正
				U43人均公共绿地面积	0.0104	0.1067	0.0192	正
				U ₄₄ 交通运输网密度	0.0311	0.0924	0.0496	正
	水资源潜力综合指数	本底条件	0.3203	W ₁₁ 水资源总量	0.1813	0.0689	0.1867	Œ
				W_{12} 人均水资源量	0.0768	0.0748	0.0859	正
				W_{13} 地下水资源比例	0.0622	0.0763	0.0710	正
		开发程度	0.2309	W ₂₁ 水资源利用率	0.0919	0.0451	0.0620	逆
				W ₂₂ 地表水供水比例	0.0290	0.0917	0.0398	正
				W ₂₃ 地下水开采率	0.0421	0.0337	0.0212	逆
				W ₂₄ 人均用水量	0.0677	0.1064	0.1077	逆
		利用效率	0.2944	W ₃₁ 单方水地区生产总值	0.1264	0.0834	0.1577	Œ
				W ₃₂ 单方水工业总产值	0.0940	0.0614	0.0863	Œ
				W ₃₃ 城镇居民生活用水定额	0.0297	0.0397	0.0176	逆
				W34灌溉用水定额	0.0443	0.0291	0.0193	逆
		管理能力	0.1544	W_{41} 全社会供水综合能力	0.0317	0.0727	0.0345	正
				W42城市生活污水处理率	0.0367	0.0559	0.0307	正
				W ₄₃ 工业废水排放达标率	0.0598	0.0331	0.0296	正
				W44生态用水比例	0.0262	0.1277	0.0500	正

2 评价结果分析

2.1 城市发展综合指数

乌鲁木齐市的城市发展综合指数基本呈逐年上升趋势(表2),由 1995年的 0.0771提高到 2010年的 0.9263,除 2000年较 1999 年略有下降(降幅为 0.07%),其他年份的城市发展综合水平较上年均有所提高。城市化率通常用城镇人口比重或非农人 口比重表示,将其与计算的城市发展综合指数进行对照比较(图2)。

表 2 1995—2010 年乌鲁木齐城市发展综合指数、子系统得分及相对增长率 Table 2 Comprehensive index of urban development (CIUD) and each subsystem's scores and growth rate

城市发展综合 城市人口 城市经济 城市社会 城市空间 指数 CIUD Urban social Urban economic Urban population Urban space 年份 增长率 增长率 增长率 增长率 增长率 Year 得分 得分 得分 得分 得分 Growth Growth Growth Growth Growth Score Score Score Score Score rate rate rate rate rate 1995 0.0771 0.0432 0.0212 0.0106 0.0021 1996 0.1166 0.5118 0.0590 0.3638 0.0406 0.9133 0.0137 0.3020 0.0033 0.5568 0.0227 1997 0.1667 0.4298 0.0650 0.1015 0.0766 0.8865 0.6524 0.0025 -0.25111998 0.2129 0.2768 0.0827 0.2731 0.0931 0.2152 0.0293 0.2925 0.0077 2.1505 0.2478 0.0849 0.2332 0.0346 0.1786 0.0136 0.7504 1999 0.1643 0.0269 0.1148 2000 0.2477-0.00070.0699 -0.17710.0912 -0.20500.0459 0.3262 0.0407 2.0004 2001 0.3095 0.2497 0.1062 0.5202 0.0970 0.0637 0.0506 0.1031 0.0556 0.3673 0.3305 0.0678 0.1186 0.1166 0.1092 0.1258 0.0528 0.0432 0.0498 -0.10452002 2003 0.3693 0.11740.12270.0341 0.14000.2819 0.05500.0411 0.0516 0.0356 2004 0.4227 0.1446 0.1260 0.0274 0.1775 0.2678 0.0622 0.1309 0.0569 0.1038 2005 0.4852 0.1479 0.1420 0.1265 0.2291 0.2904 0.0569 -0.08410.0572 0.0043 2006 0.6024 0.2417 0.2037 0.43480.2318 0.0118 0.06610.1606 0.1008 0.7637 0.2642 0.0459 0.1209 0.1992 2007 0.7151 0.1870 0.2967 0.2609 0.1255 0.0691 2008 0.8097 0.13230.2632-0.00370.3079 0.18020.0769 0.1131 0.1617 0.3370 2009 0.8486 0.0481 0.2648 0.0062 0.3176 0.0314 0.0849 0.1037 0.1813 0.1216 0.0343 2010 0.9263 0.0916 0.27520.0390 0.3648 0.1487 0.0989 0.1647 0.1876

乌鲁木齐市的非农人口比重 1995 年为 76.75%, 2010 年降 至 73.78%, 而城镇人口比重 1995 年为 79.84%, 2010 年为 96.58%。由图2可知,测算的城市发展综合指数的变化趋势与 城镇人口比重所表征的城市化率基本一致,两者之间呈明显正 相关,相关系数达 0.928。

1995-2000年为乌鲁木齐市城市缓慢发展时期,这一阶段 乌鲁木齐的城市发展综合水平增速较缓,由 1995 年的 0.0771 提 高到 2000 年的 0.2477,5 年间年均增加 0.0341;同时,乌鲁木齐 的城镇人口比重由 1995 年的 79.84%上升到 2006 年的 82.53%, 年均增加 0.54 个百分点,年均增率为 0.67%。2000 年开始实施 西部大开发政策,成为乌鲁木齐城市发展的一个转折点,表现为 2000-2010年乌鲁木齐城市高速发展,城市发展综合水平由 0.2477 提高到 0.9263, 年均增加 0.0679, 是上一阶段的 2 倍; 同 时,城镇人口比重由82.53%增长至96.58%,年均增加1.40个百 分点,年均变化率为1.58%,是上一阶段是2倍以上(表3)。

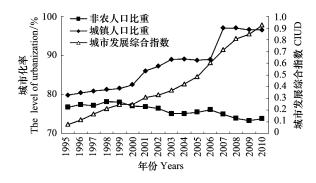


图 2 乌鲁木齐城市发展水平演变过程 Fig.2 The evolution of urban development in Urumqi CIUD: Comprehensive index of urban development

城市经济发展和城市人口增长是乌鲁木齐城市发展的主要形式,两个子系统在系统层赋予的权重也最高;城市社会进步和 城市空间扩张对城市综合发展的影响相对较小,二者赋予了相对较小的权重得分。为具体分析乌鲁木齐城市发展的内部特征 和演进过程,分别从城市人口、城市经济、城市社会、城市空间4个子系统,分析城市发展各项指标的变化情况(图3)。

(1)城市人口子系统 乌鲁木齐市作为绿洲城市和区域的中心城市,城市人口一直处于较高水平,且由于区域外的人口机械迁移,城镇人口不断增长,导致乌鲁木齐市人口城市化进程不断加快,城市人口子系统的综合评价值从1995年的0.0432增长到2010年的0.2752,增长了5倍以上。1995—2000年,从0.0432增长到0.0699,年均增长0.0053,增长比较缓慢;2000—2010年,城市发展综合指数快速增长,从0.0699增至0.2752,年均增长0.0205,增速是前一阶段的近4倍,与城市发展综合水平的阶段划分一致。

表 3 乌鲁木齐城市发展进程的阶段性特征

Table 3 Stages of urban development in Urumqi

		ħ	成市发展综合指数	•		城镇人口比重		
阶段	时段		CIUD		Urban population proportion			
Stage	Period	初期值 Initial value	末期值 Terminal value	增长率 Growth rate	初期值 Initial value	末期值 Terminal value	增长率 Growth rate	
第一阶段 First stage	1995—2000	0.0771	0.2477	0.0341	79.84%	82.53%	0.54%	
第二阶段 Second stage	2000—2010	0.2477	0.9263	0.0679	82.53%	96.58%	1.40%	

- (2)城市经济子系统 乌鲁木齐市经济发展保持持续快速增长态势,子系统的综合评价值由1995年的0.0212提高到2010年的0.3648,增长了近18倍。1995—2000年,增速相对较缓,从0.0212增至0.0912,年均增长0.0140;2000—2010年间,由于国家政策向西部倾斜,乌鲁木齐市经济增长迅速,综合评价值由0.0912增至0.3648,年均增长0.0274,是前期增速的2倍(表2),与城市发展综合水平的阶段划分一致。
- (3)城市社会子系统 在城市社会发展方面,乌鲁木齐市城市社会发展子系统的综合评价值由 1995 年的 0.0106 增长到 2010 年的 0.0989,年均增加 0.0059,社会城市化水平稳步提高。1995—2000 年综合评价值年均增长 0.0071,2000—2010 年年均增长 0.0053,各阶段的发展速度基本一致。
- (4)城市空间子系统 乌鲁木齐市的城市建设步伐持续加快,城市空间子系统的综合评价值由 1995 年的 0.0021 上升到

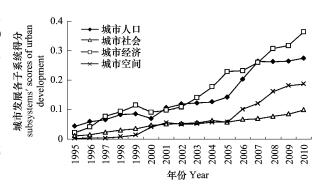


图 3 乌鲁木齐城市各子系统发展水平演变过程

Fig. 3 The evolution of urban development level on subsystems in Urumqi

2010年的 0.1876(表 2),年均增长 0.0124,增长速度较城市经济子系统、城市人口子系统慢,而快于城市社会子系统。1995—2000年城市空间缓慢发展,综合指标得分从 0.0021增至 0.0407,年均增加 0.0077;2000—2005年从 0.0407变为 0.0572,年均增长 0.0033,几乎停滞发展;2005—2010年,乌鲁木齐城市空间发展迅速,综合得分从 0.0572增至 0.1876,年均增长 0.0261,增速分别是第一阶段是 3倍左右、第二阶段是 8倍左右。这说明乌鲁木齐市城市空间发展进程在西部大开发前期和后期的增速差异显著,2005—2010年城市空间发展也成为城市综合发展水平提高的主要表现形式之一。

2.2 水资源潜力综合指数(CIWRP)

乌鲁木齐市水资源潜力的变化波动性较强,但总体呈下降趋势,水资源潜力综合指数从 1995 的 0.4722 降至 2010 年的 0.3520(表 4),年均减少 0.0080。水资源总量和人均水资源量通常用于反映区域的水资源条件和开发潜力,这里选用水资源总量指标,与计算的水资源潜力综合指数进行对照比较(图 4)。

乌鲁木齐市 1995 年水资源总量为 $11.72 \times 10^8 \text{ m}^3$, 2010 年为 $9.39 \times 10^8 \text{ m}^3$, 年均减少 $0.16 \times 10^8 \text{ m}^3$, 其间呈现波动变化, 最多年份 1996 年达 $14.92 \times 10^8 \text{ m}^3$, 最少年份 1997 年仅 $9.04 \times 10^8 \text{ m}^3$, 两者相邻出现。由图 4 可知, 测算的水资源潜力综合指数与水资源总量的变化趋势基本一致, 表明二者存在一定的相关性。

水资源本底条件的变化,是乌鲁木齐市水资源开发利用潜力变化的基础,因此其在系统中被赋予了较高的权重,其变化趋势也很大程度影响了乌鲁木齐市水资源开发利用综合指数的变化。开发程度子系统和利用效率子系统的权重得分次之,水资源管理能力子系统的权重最小。为具体分析乌鲁木齐市水资源开发利用情况,分别从本底条件、开发程度、利用效率和管理能力4个子系统,分析乌鲁木齐市水资源开发利用各项指标的变化情况。

(1)水资源本底条件 乌鲁木齐市是典型的绿洲城市,在极度缺水的干旱地区,其水资源相对丰富,但近年来水资源短缺的问题也日益严重,水资源本底条件呈现下降趋势。子系统的综合评价值变化幅度较大,波动性较强,总体呈现降低趋势,从1995年的0.2128降至2010年的0.0156,年均减少0.0131(表4,图5)。其中1998—2003年综合评价值的变化相对较小,从0.1793变为0.1509,年均减少0.0056,不到整个研究时段平均降幅的一半。

表 4	1995—2010年乌鲁木齐水资源潜力综合指数、于系统得分及相对增长率	

Table 4 (Comprehensive index of	water resources	notential (CIWRP)	and each subsystem	's scores and growth rate

- U		开发潜力 ((CIWRP)	本底条件 Nature background		开发程度 Exploitation degree		利用效率 Utilization efficiency		管理能力 Management ability	
年份 Year	得分 Score	增长率 Growth rate	得分 Score	增长率 Growth rate	得分 Score	增长率 Growth rate	得分 Score	增长率 Growth rate	得分 Score	增长率 Growth rate
1995	0.4722	-	0.2128	-	0.1801	-	0.0793	-	0.0000	-
1996	0.6317	0.3378	0.2726	0.2813	0.2009	0.1155	0.1453	0.8326	0.0128	-
1997	0.5076	-0.1964	0.0405	-0.8514	0.2270	0.1298	0.2158	0.4849	0.0243	0.8958
1998	0.3953	-0.2213	0.1793	3.4253	0.1352	-0.4044	0.0325	-0.8493	0.0482	0.9848
1999	0.3494	-0.1161	0.1763	-0.0166	0.0797	-0.4105	0.0384	0.1799	0.0550	0.1396
2000	0.3925	0.1235	0.1730	-0.0190	0.1002	0.2575	0.0534	0.3916	0.0659	0.1992
2001	0.4207	0.0717	0.1761	0.0177	0.1075	0.0729	0.0740	0.3862	0.0631	-0.0431
2002	0.4091	-0.0275	0.1665	-0.0545	0.0830	-0.2282	0.0706	-0.0457	0.0890	0.4118
2003	0.4024	-0.0163	0.1509	-0.0936	0.0793	-0.0448	0.0826	0.1700	0.0896	0.0066
2004	0.3405	-0.1540	0.0952	-0.3694	0.0680	-0.1424	0.0881	0.0661	0.0892	-0.0046
2005	0.3753	0.1023	0.0901	-0.0534	0.0740	0.0887	0.1211	0.3747	0.0901	0.0095
2006	0.3803	0.0133	0.1295	0.4375	0.0460	-0.3789	0.1186	-0.0209	0.0862	-0.0428
2007	0.3882	0.0209	0.0612	-0.5273	0.0552	0.2000	0.1804	0.5209	0.0915	0.0610
2008	0.6015	0.5495	0.1850	2.0231	0.0700	0.2688	0.2613	0.4489	0.0851	-0.0690
2009	0.3623	-0.3978	0.0295	-0.8406	0.0306	-0.5625	0.2171	-0.1693	0.0850	-0.0014
2010	0.3520	-0.0283	0.0156	-0.4699	0.0022	-0.9290	0.2384	0.0981	0.0958	0.1266

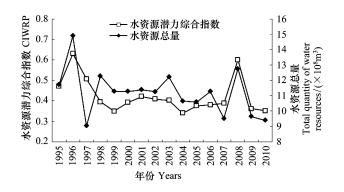


图 4 乌鲁木齐市水资源潜力综合指数与水资源总量

Fig. 4 Comprehensive index of water resources potential (CIWRP) and total quantity of water resources in Urumqi

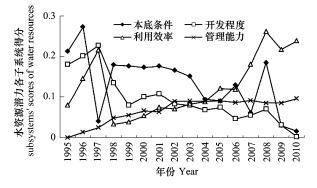


图 5 水资源潜力各子系统演变过程

Fig. 5 The evolution of water resources potential level on subsystems in Urumqi

- (2)水资源开发程度 随着乌鲁木齐市社会经济发展和人民生活水平的提高,对水资源的需求也日益加大。为满足日益增长的水资源需求,乌鲁木齐市的水资源开发程度逐年加大。指标系统中,因水资源开发程度相对水资源开发利用潜力为逆向指标,故水资源开发程度的加大,表现为该子系统综合评价值的降低。1995年,乌鲁木齐市水资源开发程度子系统的综合评价值为 0.1801,2010 年降至 0.0022,年均下降 0.0119。
- (3)水资源利用效率 社会经济的发展和技术进步,推动了乌鲁木齐市水资源利用效率的提高。除异常年份 1996、1997 和 2008 年外,乌鲁木齐市水资源利用效率基本呈现逐年增加趋势,子系统综合评价值从 1995 年的 0.0793 增加到 2010 年的 0.2384,年均增加 0.0106,最低年份 1998 年为 0.0325,最高年份 2008 年为 0.2613,几乎是前者的 8 倍。
- (4)水资源管理能力 水资源紧缺性引起了人们的高度重视,乌鲁木齐市水资源管理能力也逐年有所提高,子系统综合评价值由 1995 年的 0 提高到 2010 年的 0.0958,基本呈稳定增加趋势,年均增加 0.0063。水资源管理能力是水资源开发潜力的重要指标,水资源管理能力的提高,将促进水资源的可持续发展与水资源潜力的提升。

2.3 城市发展-水资源潜力协调度(CDUD-WRP)

基于计算得出的城市发展综合指数和水资源开发利用综合指数,利用公式 4、5、6,分别计算乌鲁木齐市城市发展-水资源利用的协调度、综合发展指数和协调发展度,并建立概念评价模型,将城市发展水平和水资源利用潜力按照高(0.8—1)、较高(0.6—0.8)、中(0.4—0.6)、较低(0.2—0.4)和低(0—0.2)进行等级划分,结果如表 5 所示。

协调度评价结果显示,1995—2010年间,乌鲁木齐市的城市发展综合指数和水资源潜力综合指数在较多年份相差不大,两 系统间协调度较高,尤其 1998-2006 年两个系统处于高度协调状态,协调度指数 C 值一直高于 0.8。研究初期因城市发展程度 相对较低,而水资源开发利用潜力较好,两系统的协调度最低, C 值为 0.2331,协调发展度指数 D 值也为最低 0.2530。整体来 看,乌鲁木齐市城市发展—水资源系统的协调度呈现倒 \mathbb{U} 字型变化,与 \mathbb{I} \mathbb{I} \mathbb{I} \mathbb{I} \mathbb{I} \mathbb{I} \mathbb{I} \mathbb{I} 的变化趋势相反(图 6)。2003 年以前, f(U) < g(W),随着城市发展水平的逐渐提高和水资源开发利用程度的加剧,f(U)逐年升高,g(W)逐年降低,|f(U) - g(W)|逐渐 减小,2003年两值差距最小,故两系统的协调度为最高,达0.9963,但由于城市发展与水资源潜力的整体水平不高,该年份乌鲁 木齐市的协调发展程度处于较高水平。2004 年之后城市发展综合指数 f(U) 大于水资源潜力指数 g(W) ,且 |f(U)-g(W)|逐渐 增大,因此协调度 C 值呈现下降趋势。丰水年 2008 年城市发展水平与水资源潜力指数均较高,表现为该年份乌鲁木齐城市发 展-水资源系统协调度较高,处于高度协调发展状态。

	表 5	1995—2010年乌鲁木齐市城市发展-水资源潜力协调度评价结果
Table 5	Evaluation results of	coordination degree between urban development and water resources notential in Urum

Table 5	Evaluation results of c	coordination degree betw	een urban development	t and water resources	notential in Urumai

	城市发展:	综合指数	水资源潜力综合指数				城市发展-水资源潜力协调度				
年份	CIU	JD	CIW	RP			CDU	D-WRP			
Year	f(U)	等级 Grade	g(W)	等级 Grade	C	等级 Grade	T	等级 Grade	D	等级 Grade	
1995	0.0771	低	0.4722	中	0.2331	较低	0.2746	较低	0.2530	较低	
1996	0.1166	低	0.6317	较高	0.2768	较低	0.3741	较低	0.3218	较低	
1997	0.1667	低	0.5076	中	0.5541	中	0.3372	较低	0.4322	中	
1998	0.2129	较低	0.3953	较低	0.8282	高	0.3041	较低	0.5018	中	
1999	0.2478	较低	0.3494	较低	0.9430	高	0.2986	较低	0.5306	中	
2000	0.2477	较低	0.3925	较低	0.9002	高	0.3201	较低	0.5368	中	
2001	0.3095	较低	0.4207	中	0.9542	高	0.3651	较低	0.5902	中	
2002	0.3305	较低	0.4091	中	0.9775	高	0.3698	较低	0.6012	较高	
2003	0.3693	较低	0.4024	中	0.9963	高	0.3858	较低	0.6200	较高	
2004	0.4227	中	0.3405	较低	0.9769	高	0.3816	较低	0.6105	较高	
2005	0.4852	中	0.3753	较低	0.9676	高	0.4302	中	0.6452	较高	
2006	0.6024	较高	0.3803	较低	0.9004	高	0.4913	中	0.6651	较高	
2007	0.7151	较高	0.3882	较低	0.8322	高	0.5516	中	0.6775	较高	
2008	0.8097	高	0.6015	较高	0.9570	高	0.7056	较高	0.8217	高	
2009	0.8486	高	0.3623	较低	0.7034	较高	0.6054	较高	0.6526	较高	
2010	0.9263	高	0.3520	较低	0.6370	较高	0.6392	较高	0.6381	较高	

乌鲁木齐市城市发展水平的不断提高,对水资源开发利用 程度的要求也越来越高。而城市发展水平与水资源开发潜力之 间的协调度先升后降,主要是由于水资源开发潜力的降低,导致 二者的协调发展度不高,表明城市发展系统和水资源系统的矛 盾也越突出。在未来发展中,应该在保持城市发展速度的情况 下,提高乌鲁木齐市水资源利用效率和水资源管理能力,保证水 资源的的高效合理利用。

3 结论

通过构建适合干旱区绿洲的城市发展与水资源潜力综合评 价指标体系,城市发展-水资源潜力的协调度模型,探讨乌鲁木齐 市城市发展与水资源潜力的综合水平及二者的协调关系。主要 得出以下结论:

(1)乌鲁木齐市的城市发展综合水平基本呈逐年上升趋势, 其变化趋势与城镇人口比重所表征的城市化率基本一致,随城

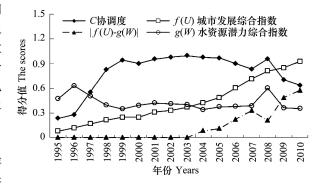


图 6 乌鲁木齐市城市发展-水资源潜力协调度示意图 Fig.6 Schematic diagram of coordination degree between urban development and water resources potential in Urumqi

市发展阶段不同而具有差异。经济发展与人口增长是乌鲁木齐城市发展的主要形式,尤其城镇人口的快速增加和地区生产总 值的高速增长,导致城市发展综合水平大幅上升。社会进步和空间扩张对城市综合发展的影响相对较小。

(2)乌鲁木齐市水资源开发利用潜力的变化波动性较强,总体呈现下降趋势。水资源本底条件的变化趋势较大程度影响

了乌鲁木齐市水资源潜力综合指数的变化。水资源开发率,尤其地下水资源的严重超采,使开发程度大幅上升,水资源开发潜力相应下降。技术进步导致工业和农业用水定额下降,推动了水资源利用效率的提高,水资源管理能力的提高,也将促进水资源的可持续发展与水资源潜力的提升。

(3)乌鲁木齐市城市发展与水资源系统的协调度先升后降,呈倒 U 字型变化。初期因城市发展程度相对较低,而水资源开发程度较弱,水资源开发利用潜力较好,两系统的协调度最低;随着城市发展水平逐渐提高和水资源开发利用程度加剧,二者的差距减小,系统的协调度达最高;城市发展水平的继续加大,使其与水资源潜力综合指数的差距开始拉大,二者协调度呈下降趋势。水资源潜力的降低,则导致二者的协调发展度不高,城市发展系统和水资源系统的矛盾日渐突出。

References:

- [1] Lu D D, Ye D N, Yao S M, Liu S H, Gao X L, Liu H, Li G P, Duan J J, Chen M X.Restrain the rash advance of urbanization and the wild spatial expansion by integrated measures. Science News, 2007, (8): 4-9.
- [2] Qiu B X.The main lesson of the foreign urbanization. City Planning Review, 2004, 28(4): 8-12.
- [3] Liu Y B, Li R D, Song X F.Grey associative analysis of regional urbanization and eco-environment coupling in China. Acta Geographica Sinica, 2005, 60(2): 237-247.
- [4] Cheng H W, Li Y W, Xu Z M.Social adaptive capacity for water resource scarcity in human systems and case study on its measuring. Acta Ecologica Sinica, 2011, 31(5): 1430-1439.
- [5] Chenery H, Syrquin M.Patterns of Development: 1950—1970.Beijing: Economic Science Press, 1988.
- [6] Zhou Y X.Urban Geography.Shanghai: The Commercial Press, 1995.
- [7] Zhao C, Wang Y, Gu X M, Zhao H H, Wu Y P, Zhu X D, Lu G F. Water use efficiency of Jiangsu Province based on the data envelopment analysis approach. Acta Ecologica Sinica, 2013, 33(5): 1636-1644.
- [8] Fitzhugh T W, Richter B D.Quenching urban thirst: growing cities and their impacts on freshwater ecosystems. Bioscience, 2004, 54(8): 741-754.
- [9] Jenerette G D, Larsen L.A global perspective on changing sustainable urban water supplies. Global and Planetary Change, 2006, 50 (3/4): 202-211.
- [10] Merrett S.Introduction to the Economics of Water Resources: An International Perspective.London: University College London Press, 1997.
- [11] Gao Y F. Urbanization and the evolution of the water system. Urban Geotechnical Investigation & Surveying, 1998, (3): 5-8.
- [12] Jia S F, Zhou C Q, Yan H Y, Zhou H F, Tang Q C, Zhang J B.Estimation of usable water resources and carrying capacity in Northwest China. Advances in Water Science, 2004, 15(6): 801-807.
- [13] Bernardo D J, Mapp H P, Sabbagh G L, Geleta S, Watkins K B, Elliott R L, Stone J F. Economic and environmental impacts of water quality protection policies: 1.Framework for regional analysis. Water Resources Research, 1993, 29(9): 3069-3079.
- [14] Al-Kharabsheh A, Ta'any R. Influence of urbanization on water quality deterioration during drought periods at South Jordan. Journal of Arid Environments, 2003, 53(4): 619-630.
- [15] Fang C L, Li M.Urbanization mode with the restraint of water resource in Hexi Corridor arid area of Northwest China. Geographical Research, 2004, 23(6): 825-832.
- [16] Yang G, He X L, Li J F, Jia X J.The evaluation method of water resources sustainable utilization in Manas River Basin. Acta Ecologica Sinica, 2011, 31(9): 2407-2413.
- [17] Liu Y L.Design of sustainable development indicators system and the exploration of evaluation methods. Ecological Economy, 1999, 18(6): 17-20.
- [18] Wen Y M, Ke X K, Wang F.Study on assessment system and assessment method of sustainable development of human-earth system. Advance in Earth Sciences, 1999, 14(1): 51-55.
- [19] Xu S L.Suggestions on statistic index system for the quantitative evaluation of sustainable development. Statistics & Information Forum, 2000, 15 (1); 7-14.
- [20] Qiao B, Fang C L, Huang J C.The coupling law and its validation of the interaction between urbanization and ecoenvironment in arid area. Acta Ecologica Sinica, 2006, 26(7): 2183-2190.
- [21] Chen M X, Lu D D, Zhang H.Comprehensive evaluation and the driving factors of China's urbanization. Acta Geographica Sinica, 2009, 64(4): 387-398
- [22] Tang H, Yang D G, Qiao X N, Yang L, Wang G G. Evaluation of coordination degree between regional development and eco-environment on the Northern Slope of the Tianshan Mountains. Progress in Geography, 2009, 28(5): 805-813.
- [23] Fang C L, Mao H Y.A system of indicators for regional development planning. Acta Geographica Sinica, 1999, 54(5): 410-419.
- [24] Fang C L.Planning Theory for Regional Development.Beijing: Science Press, 2000.
- [25] Xu J H.Mathematical Methods in Contemporary Geography. Beijing: Higher Education Press, 2002.
- [26] Li X B. Analysis of the coordination degree between economic development and environment of Wuhan City. Journal of Hunan University of Technology; Social Science Edition, 2008, 13(1); 63-65.

- [27] Shao B, Chen X P.Research on the actuality of the coordinated development of economy and ecological environment in Northwest China. Arid Land Geography, 2005, 28(1): 136-141.
- [28] Cai W C. Harmonious Development Analysis and Spatial Mode Choice of the Regional Economy in Xinjiang [D]. Beijing: Graduate University of the Chinese Academy of Sciences, 2006.

参考文献:

- [1] 陆大道,叶大年,姚士谋,刘盛和,高晓路,刘慧,李国平,段进军,陈明星.采取综合措施遏制冒进式城镇化和空间失控趋势.科学新闻,2007,(8):4-9.
- [2] 仇保兴.国外城市化的主要教训.城市规划,2004,28(4):8-12.
- [3] 刘耀彬,李仁东,宋学锋.中国区域城市化与生态环境耦合的关联分析.地理学报,2005,60(2):237-247.
- [4] 程怀文, 李玉文, 徐中民, 水资源短缺的社会适应能力理论及实证——以黑河流域为例, 生态学报, 2011, 31(5): 1430-1439.
- [5] 霍利斯・钱纳里、莫伊思・赛尔昆.发展的型式: 1950-1970.北京: 经济科学出版社、1988.
- 「6] 周一星.城市地理学.上海: 商务印书馆, 1995.
- [7] 赵晨,王远,谷学明,赵卉卉,吴尧萍,朱晓东,陆根法.基于数据包络分析的江苏省水资源利用效率.生态学报,2013,33(5):1636-1644.
- [11] 高云福.城市化发展与水系统的演变.城市勘测, 1998, (3): 5-8.
- [12] 贾绍凤,周长青,燕华云,周宏飞,汤奇成,张捷斌.西北地区水资源可利用量与承载能力估算.水科学进展,2004,15(6):801-807.
- [15] 方创琳,李铭.水资源约束下西北干旱区河西走廊城市化发展模式.地理研究,2004,23(6):825-832.
- [16] 杨广,何新林,李俊峰,贾筱娟.玛纳斯河流域水资源可持续利用评价方法.生态学报,2011,31(9):2407-2413.
- [17] 刘渝琳.我国可持续发展指标体系的设计和评价方法探索.生态经济, 1999, 18(6): 17-20.
- [18] 温琰茂, 柯雄侃, 王峰.人地系统可持续发展评价体系与方法研究.地球科学进展, 1999, 14(1): 51-55.
- [19] 徐世龙.可持续发展定量评价统计指标体系的构想.统计与信息论坛,2000,15(1):7-14.
- [20] 乔标,方创琳,黄金川.干旱区城市化与生态环境交互耦合的规律性及其验证.生态学报,2006,26(7):2183-2190.
- [21] 陈明星, 陆大道, 张华.中国城市化水平的综合测度及其动力因子分析.地理学报, 2009, 64(4): 387-398.
- [22] 唐宏,杨德刚,乔旭宁,杨莉,王国刚.天山北坡区域发展与生态环境协调度评价.地理科学进展,2009,28(5):805-813.
- [23] 方创琳, 毛汉英.区域发展规划指标体系建立方法探讨.地理学报, 1999, 54(5): 410-419.
- [24] 方创琳.区域发展规划论.北京: 科学出版社, 2000.
- [25] 徐建华.现代地理学中的数学方法.北京: 高等教育出版社, 2002.
- [26] 李小彬.武汉市经济与环境发展协调度分析.湖南工业大学学报:社会科学版,2008,13(1):63-65.
- [27] 邵波, 陈兴鹏.中国西北地区经济与生态环境协调发展现状研究.干旱区地理, 2005, 28(1): 136-141.
- [28] 蔡文春.新疆区域经济协调发展分析及空间模式选择[D].北京:中国科学院研究生院,2006.

Development of agroecology in USA
Analysis and evaluation of the eco-economic systems of the main crops (rice, cotton and rapeseed) in Jiangxi Province, China SUN Weimin, OU Yizhi, HUANG Guoqin (5467)
Relationship among drought, hydraulic metabolic, carbon starvation and vegetation mortality DONG Lei, LI Jiyue (5477)
Reviews on the ecological stoichiometry characteristics and its applications
Composition and fractal features of purple soil aggregates during the vegetation restoration processes in the Three Gorges Reser-
voir Region WANG Yihao, GENG Yanghui, HUANG Zhonghua (5493)
Impacts of different surface covers on soil respiration in urban areas FU Zhihong, HUYAN Jiaoqi, LI Feng, et al (5500)
Chilling sensitivities of three closely related plants with different invasiveness in South China
WANG Yutao, LI Chunmei, LI Shaoshan (5509)
The flower sydrome and pollination adaptation of desert rare species Eremosparton songoricum (litv.) Vass.(Fabaceae) · · · · · · · · · · · · · · · · · · ·
SHI Xiang, LIU Huiliang, ZHANG Daoyuan, et al (5516)
Competitive effect of Pistia stratiotes to rice and its impacts on rice yield and soil nutrients
Photosynthetic physiological ecology characteristics of rare medicinal plants Bletilla striata
WU Mingkai, LIU Hai, SHEN Zhijun, et al (5531)
${\it Photosynthetic responses to Solar~UV~radiation~of~\textit{Gracilaria~lemaneiformis}~cultured~under~different~temperatures~and~CO_2}$
concentrations
The effect of soil oxygen availability on greenhouse gases emission in a double rice field · · · · · · · · · · · · · · · · · · ·
$ \hbox{\it Effects of nitrogen management on NH}_3$ \ volatilization \ and \ nitrogen \ use \ efficiency \ under \ no-tillage \ paddy \ fields \ \cdots $
Study on characteristics of net photosynthetic rate of two kinds of tree shape and Impact Factors in Korla fragrant pear
SUN Guili, XU Min, LI Jiang, et al (5565)
Effects of sand burial on growth, survival, photosynthetic and transpiration properties of Agriophyllum squarrosum seedlings
ZHAO Halin, QU Hao, ZHOU Ruilian, et al (5574)
Effects of using plastic film as mulch combined with bunch planting on soil temperature, moisture and yield of spring wheat in a
semi-arid area in drylands of Gansu, China WANG Hongli, SONG Shangyou, ZHANG Xucheng, et al (5580)
Study on soil aggregates stability of mulberry ridge in Rocky Desertification based on Le Bissonnais method
Effects of fertilization on nitrogen loss with different forms via runoff and seepage under Phyllostachy praecox stands
Characteristics of physiological groups of soil nitrogen-transforming microbes in different vegetation types in the Loess Gully
region, China
Effects of vegetation types on soil microbial biomass C, N, P on the Loess Hilly Area
ZHAO Tong, YAN Hao, JIANG Yueli, et al (5615)
Influence of mulching management on soil microbe and its relationship with soil nutrient in <i>Phyllostachys praecox</i> stand
GUO Ziwu, YU Wenxian, CHEN Shuanglin, et al (5623)
Effect of rainfall on the seasonal variation of soil respiration in Hulunber Meadow Steppe
WANG Xu, YAN Yuchun, YAN Ruirui, et al (5631)
Spatial heterogeneity of fine roots in a subtropical evergreen broad-leaved forest and their sampling strategy based on soil coring method
Changes of leaf traits and WUE with crown height of four tall tree species HE Chunxia, LI Jiyue, MENG Ping, et al (5644) Sap flow dynamics of <i>Populus alba</i> L.× <i>P. talassica</i> plantation in arid desert area ZHANG Jun, LI Xiaofei, LI Jiangui, et al (5655)
Effects of simulated temperature increase and vary little quality on litter decomposition
Lilu Ruipeng, MAO Zijun, LI Xinghuan, et al (5661)
The effects of leaf stoichiochemistric characters on litter turnover in an arid-hot valley of Jinsha River, China
YAN Bangguo, JI Zhonghua, HE Guangxiong, et al (5668)
Comparison of concentrations of non-structural carbohydrates between new twigs and old branches for 12 temperate species
ZHANG Haiyan, WANG Chuankuan, WANG Xingchang (5675)
Combined effects of root cutting, auxin application, and potassium fertilizer on growth, sugar: nicotine ratio, and organic potassi-
um index of flue-cured tobacco
Effects of photoperiod and high fat diet on energy intake and thermogenesis in female <i>Apodemus chevrieri</i>
GAO Wenrong, ZHU Wanlong, MENG Lihua, et al (5696)
Effects of dietary chlorogenic acid supplementation on antioxidant system and anti-low salinity of <i>Litopenaeus vannamei</i>
WANG Yun, LJ Zheng, LJ Jian, et al. (5704)

Responses of desert plant diversity, community and interspecific association to soil salinity gradient
Community characteristics in a chronosequence of karst vegetation in Mashan county, Guangxi WEN Yuanguang, LEI Liqun, ZHU Hongguang, et al (5723)
Association between environment and community of <i>Pinus taiwanensis</i> in Daiyun Mountain
The dynamics of soil fauna community during litter decomposition at different phenological stages in the subtropical evergreen broad-leaved forests in Sichuan basin
Seasonal dynamics and content of soil labile organic carbon of mid-subtropical evergreen broadleaved forest during natural succession
The stoichiometric characteristics of C, N, P for artificial plants and soil in the hinterland of Taklimakan Desert
A preliminary investigation on the population and behavior of the Tundra Swan (<i>Cygnus columbianus</i>) in Poyang Lake
Effects of nutrient enrichment and fish stocking on succession and diversity of phytoplankton community CHEN Chun, LI Sijia, XIAO Lijuan, HAN Boping (5777
The depositional environment and organic sediment component of Dagze Co, a saline lake in Tibet, China
Spatiotemporal variation of interacting relationships among multiple provisioning and regulating services of Tibet grassland ecosystem
Spatial distribution of dissloved amino acids in Lake Taihu, China
Trends of spring maize phenophases and spatio-temporal responses to temperature in three provinces of Northeast China during the past 20 years LI Zhengguo, YANG Peng, TANG Huajun, et al (5818
Species selection for landscape rehabilitation and their response to environmental factors in Poyang Lake wetlands
Temporal and spatial pattern of the phytoplankton biomass in the Pearl River Delta
Spatio-temporal dynamics of land use/land cover and its driving forces in Nanjing from 1995 to 2008
Changes of organic carbon and its labile fractions in topsoil with altitude in subalpine-alpine area of southwestern China
The carbon sink of urban forests and efficacy on offsetting energy carbon emissions from city in Guangzhou ZHOU Jian, XIAO Rongbo, ZHUANG Changwei, et al (5865)
Groundwater salt content change and its simulation based on machine learning model in hinterlands of Taklimakan Desert
Analysis of coordination degree between urban development and water resources potentials in arid oasis city XIA Fuqiang, TANG Hong, YANG Degang, et al (5883)
Constructing an assessment indices system to analyze integrated regional carrying capacity in the coastal zones: a case in Nantong
Fish species diversity in Zhongjieshan Islands Marine Protected Area (MPA) LIANG Jun, XU Hanxiang, WANG Weiding (5905)
Distribution and long-term changes of net-phytoplankton in the tidal freshwater estuary of Changjiang during wet season
Study of urban metabolic structure based on ecological network: a case study of Dalian
Factors influencing of residents' tolerance towards wild boar in and near nature reserve: Taking the Heilongjiang Fenghuangshan Nature Reserve as the example XU Fei, CAI Tijiu, JU Cunyong, et al (5935) Herdsmen's willingness to participate in ecological protection in Sanjiangyuan Region, China
LI Huimei, ZHANG Anlu, WANG Shan, et al (5943) Analysis of first flush in rainfall runoff in Shenyang urban city LI Chunlin, LIU Miao, HU Yuanman, et al (5952)

《生态学报》2013年征订启事

《生态学报》是由中国科学技术协会主管,中国生态学学会、中国科学院生态环境研究中心主办的生态学高级专业学术期刊,创刊于1981年,报道生态学领域前沿理论和原始创新性研究成果。坚持"百花齐放,百家争鸣"的方针,依靠和团结广大生态学科研工作者,探索生态学奥秘,为生态学基础理论研究搭建交流平台,促进生态学研究深入发展,为我国培养和造就生态学科研人才和知识创新服务、为国民经济建设和发展服务。

《生态学报》主要报道生态学及各分支学科的重要基础理论和应用研究的原始创新性科研成果。特别欢迎能反映现代生态学发展方向的优秀综述性文章;研究简报;生态学新理论、新方法、新技术介绍;新书评价和学术、科研动态及开放实验室介绍等。

《生态学报》为半月刊,大16开本,300页,国内定价90元/册,全年定价2160元。

国内邮发代号:82-7,国外邮发代号:M670

标准刊号:ISSN 1000-0933 CN 11-2031/Q

全国各地邮局均可订阅,也可直接与编辑部联系购买。欢迎广大科技工作者、科研单位、高等院校、图书馆等订阅。

通讯地址: 100085 北京海淀区双清路 18 号 电 话: (010)62941099; 62843362

E-mail: shengtaixuebao@rcees.ac.cn 网址: www.ecologica.cn

本期责任副主编 陈利顶 编辑部主任 孔红梅 执行编辑 刘天星 段 靖

生 态 学 报

(SHENGTAI XUEBAO) (半月刊 1981年3月创刊) 第33卷 第18期 (2013年9月) ACTA ECOLOGICA SINICA

(Semimonthly, Started in 1981)

Vol. 33 No. 18 (September, 2013)

	辑	《生态学报》编辑部	Edited	by	Editorial board of
21111	14	地址:北京海淀区双清路 18 号	Euittu	Бу	ACTA ECOLOGICA SINICA
		邮政编码:100085			
		电话:(010)62941099			Add: 18, Shuangqing Street, Haidian, Beijing 100085, China
		www.ecologica.cn			Tel: (010) 62941099
		shengtaixuebao@ rcees.ac.cn			www.ecologica.cn
主	编	王如松			shengtaixuebao@ rcees.ac.cn
主 主 主	管	甲国科字坟不协会	Editor-in-ch		WANG Rusong
主	办	中国生态学学会	Supervised	by	China Association for Science and Technology
		中国科学院生态环境研究中心	Sponsored	by	Ecological Society of China
		地址:北京海淀区双清路 18 号			Research Center for Eco-environmental Sciences, CAS
		邮政编码:100085			Add: 18, Shuangqing Street, Haidian, Beijing 100085, China
出	版	斜学出版社 I	Published	by	Science Press
		地址:北京东黄城根北街 16 号			Add:16 Donghuangchenggen North Street,
		邮政编码:100717			Beijing 100717, China
印	刷	北京北林印刷厂	Printed	by	Beijing Bei Lin Printing House,
发	行	斜华出版社			Beijing 100083, China
		地址:东黄城根北街 16 号	Distributed	by	Science Press
		邮政编码:100717			Add:16 Donghuangchenggen North
		电话:(010)64034563			Street, Beijing 100717, China
.		E-mail:journal@cspg.net			Tal (010)64024563
订	购	全国各地邮局			E-mail:journal@cspg.net
国外	友行	中国国际图书贸易总公司	Domestic		All Local Post Offices in China
		地址:北京 399 信箱	Foreign		China International Book Trading
产生4	经营	即政编书:100044	V-V-6-1		Corporation Corporation
许可		京海工商广字第 8013 号			Add; P.O.Box 399 Beijing 100044, China
ν⊤ HJ	MT				Add: F.O. box 399 beijing 100044, China

ISSN 1000-0933 CN 11-2031/Q

国内外公开发行

国内邮发代号 82-7

国外发行代号 M670

定价 90.00 元