ISSN 1000-0933 CN 11-2031/Q

住态学说 Acta Ecologica Sinica

第34卷 第2期 Vol.34 No.2 2014

中国生态学学会 主办 中国科学院生态环境研究中心 *科 学 出 版 社* 出版

生态学报

(SHENGTAI XUEBAO)

第34卷第2期 2014年1月 (半月刊)

目 次

前沿理论与学科综述

连续免耕对不同质地稻田土壤理化性质的影响 龚冬琴,吕 军 (239)
下辽河平原景观格局脆弱性及空间关联格局
完全水淹环境中光照和溶氧对喜旱莲子草表型可塑性的影响 许建平,张小萍,曾 波,等(258)
赤湖过程中"藻-菌"关系研究进展周 进,陈国福,朱小山,等(269)
盐湖微微型浮游植物多样性研究进展 王家利,王 芳(282)
臭氧胁迫对植物主要生理功能的影响 列淦文,叶龙华,薛 立 (294)
啮齿动物分子系统地理学研究进展
生态系统服务制图研究进展 张立伟,傅伯杰 (316)
个体与基础生态
NaCl 胁迫下沙枣幼苗生长和阳离子吸收、运输与分配特性 刘正祥,张华新,杨秀艳,等 (326)
不同生境吉首蒲儿根叶片形态和叶绿素荧光特征的比较 向 芬,周 强,田向荣,等 (337)
小麦 LAI-2000 观测值对辐亮度变化的响应 王 龑, 田庆久, 孙绍杰, 等 (345)
K^+ 、 Cr^{6+} 对网纹藤壶幼虫发育和存活的影响 胡煜峰,严 涛,曹文浩,等 (353)
马铃薯甲虫成虫田间扩散规律 李 超,彭 赫,程登发,等(359)
种群、群落和生态系统
莱州湾及黄河口水域鱼类群落结构的季节变化 孙鹏飞,单秀娟,吴 强,等 (367)
黄海中南部不同断面鱼类群落结构及其多样性 单秀娟,陈云龙,戴芳群,等(377)
苏南地区湖泊群的富营养化状态比较及指标阈值判定分析 陈小华,李小平,王菲菲,等 (390)
盐城淤泥质潮滩湿地潮沟发育及其对米草扩张的影响 侯明行,刘红玉,张华兵 (400)
江苏省农作物最大光能利用率时空特征及影响因子康婷婷,高 苹,居为民,等(410)
1961—2010年潜在干旱对我国夏玉米产量影响的模拟分析 曹阳,杨婕,熊伟,等(421)
黑龙江省20世纪森林变化及对氧气释放量的影响 张丽娟,姜春艳,马 骏,等(430)
松嫩草原不同演替阶段大型土壤动物功能类群特征 李晓强,殷秀琴,孙立娜(442)
小兴安岭6种森林类型土壤微生物量的季节变化特征
景观、区域和全球生态

黄淮海地区干旱变化特征及其对气候变化的响应 …………… 徐建文,居 辉,刘 勤,等(460)

我国西南地区风速变化及其影响因素	张志斌,杨 莹,张小平,等(471)
青海湖流域矮嵩草草甸土壤有机碳密度分布特征	曹生奎,陈克龙,曹广超,等(482)
基于生命周期评价的上海市水稻生产的碳足迹	曹黎明,李茂柏,王新其,等(491)
研究简报	

荒漠草原区柠条固沙人工林地表草本植被季节变化特征	刘1	任涛,	柴永	青,徐	坤,等	£ (500)
跨地带土壤置换实验研究	••••	靳英	华,许	嘉巍	,秦丽杰	5 (509)
SWAT模型对景观格局变化的敏感性分析——以丹江口库区老灌河流域为	例・	•••••		•••••	•••••	•••••	•
	••••	魏	冲,宋	天 轩	,陈 杰	5 (517)
期刊基本参数:CN 11-2031/Q*1981*m*16*288*zh*P* ¥90.00*1510*29*2014	4-01						

封面图说:高原盐湖——中国是世界上盐湖分布比较稠密的国家,主要分布在高寒的青藏高原以及干旱半干旱地区的新疆、内蒙古一带。尽管盐湖生态环境极端恶劣,但它们依然是陆地特别是高原生态系统中十分重要的组成部分。微微型浮游植物通常是指粒径在 0.2—3 µm 之间的光合自养型浮游生物。微微型浮游植物不仅是海洋生态系统中生物量和生产力的最重要贡献者,也是盐湖生态系统最重要的组成部分。研究显示,水体矿化度是影响微微型浮游植物平面分布及群落结构组成的重要因子,光照、营养成分和温度等也会影响盐湖水体中微微型浮游植物平面分布及群落结构组成(详见 P282)。

彩图提供:陈建伟教授 北京林业大学 E-mail: cites. chenjw@163. com

DOI: 10.5846/stxb201301120086

康婷婷,高苹,居为民,黄金龙.江苏省农作物最大光能利用率时空特征及影响因子.生态学报,2014,34(2):410-420.

Kang T T, Gao P, Ju W M, Huang J L. The spatial and temporal variations of maximum light use efficiency and possible driving factors of croplands in Jiangsu Province. Acta Ecologica Sinica, 2014, 34(2):410-420.

江苏省农作物最大光能利用率时空特征及影响因子

康婷婷¹,高 苹²,居为民^{1,*},黄金龙¹

(1. 南京大学国际地球系统科学研究所,南京 210023; 2. 江苏省气象服务中心,南京 210008)

摘要:基于遥感数据的光能利用率模型被广泛应用于计算陆地生态系统的生产力,但其结果对最大光能利用率(ε_{max})参数非常 敏感。由于该参数存在明显的时空变异性,在区域尺度上难以确定。利用 MODIS 遥感数据、分县产量统计数据和 VPM 模型推 算了 2001—2010 年江苏省各县逐年的农田 ε_{max} ,分析了其时空变化特征及其可能原因。结果表明,在 2001—2010 年期间,江苏 省 61 个县区农田 ε_{max} 平均值的变化范围为 0.757—3.435 g C/MJ,呈现北高南低、中间高四周较低的空间分布特征;各县区农田 的 ε_{max} 都呈现出上升趋势,但在 2001—2006 年期间存在明显的年际波动,2002 年、2004 年和 2006 年的 ε_{max} 相对较低,2007 年后 全省农田 ε_{max} 稳定上升; ε_{max} 的年际波动呈现由北向南递减的趋势;全省大部分地区 ε_{max} 的年际变化与单位耕地面积农用化肥 施用量呈正相关性,苏北北部尤为明显;同时也与 C₄ 作物产量所占比例相关。研究表明在利用光能利用率模型计算农田生产 力时,需要发展能考虑 ε_{max} 时空变化的参数化方案。

关键词:光能利用率; VPM 模型; 农田; 时空变化; 影响因子

The spatial and temporal variations of maximum light use efficiency and possible driving factors of Croplands in Jiangsu Province

KANG Tingting¹, GAO Ping², JU Weimin^{1,*}, HUANG Jinlong¹

1 International Institute for Earth System Science, Nanjing University, Nanjing 210023, China

2 Meteorological Service Center for Jiangsu Province, Nanjing 210008, China

Abstract: The productivity is a critical component of the terrestrial carbon cycle. Remote sensing driven light use efficiency models have been widely utilized to calculate the productivity of terrestrial ecosystems. They calculate the productivity as a linear product of maximum light use efficiency ε_{max} , scaling factors of environmental stress, and absorbed photosynthetically active radiation (APAR). The outputs of these models are very sensitive to t maximum light use efficiency (ε_{max}), which represents the utilization rate of photosynthetically active radiation under ideal conditions without restrictions. However, it is difficult to determine this parameter properly since it is affected by numerous factors, including canopy nitrogen content, atmospheric concentration of CO₂, plant types and species, and exhibit significant spatial and temporal variations. In currently used light use efficiency models, this parameter only changes with plant types. Such simplified parameterization might induce large uncertainties in calculated productivity of terrestrial ecosystems at regional and global scales. In this study, MODIS reflectance data, county \level yield census data, locally observed meteorological data, and the vegetation photosynthesis model (VPM) were employed to derive annual mean county \level cropland ε_{max} in Jiangsu province for the period from 2001 to 2010. The county \level yield census data was converted into total net primary productivity of each county for estimating the ε_{max} parameter in the VPM model. Then, the spatial and temporal variations of ε_{max} and possible

基金项目:全球变化重大科学研究计划资助项目(2010CB950702)

收稿日期:2013-01-12; 修订日期:2013-09-03

^{*} 通讯作者 Corresponding author.E-mail: juweimin@ nju.edu.cn

driving factors were analyzed were analyzed. The results show that the county\level means of cropland ε_{max} in 61 counties of Jiangsu province varied between 0.757-3.435 g C/MJ during the period from 2001 to 2010, with an overall gradient decreasing from the north to the south. It is higher in the central areas than in the surrounding areas. Annual mean cropland $\varepsilon_{\rm max}$ increased during the period from 2001 to 2010 in all 61 counties, but showed obvious interannual fluctuations during the period from 2001 to 2006. It was relatively lower in years 2002, 2004 and 2006 and steadily increased in all counties since 2007. The interannual fluctuations of ε_{max} were normally higher in the north than in the south. The annual means of ε_{max} were positively related to the amount of fertilizer used in per unit area of cultivated cropland in most counties, particularly in the northern areas of Jiangsu Province. The increasing rates of ε_{max} were positively correlated with the increasing rates of fertilizer utilization per unit area. The interannual fluctuations of ε_{max} were also related to the yield fraction of C_4 crops (corn). This study proves that it is of importance to develop a parameterization scheme accounting for the temporal and spatial variations of ε_{max} for improving the calculation of productivity in croplands using light use efficiency models and remote sensing data. It should be kept in mind that some factors might induce uncertainties estimated ε_{max} , such as the uncertainties in yield census data, the parameters used to converts yield into net primary productivity, methodologies used to calculate APAR and scaling factors of environmental stress. The underlying mechanisms for driving significant spatial and temporal variations of ε_{max} need further thorough investigation. Nevertheless, the findings in this study can provide a value reference for optimizing the calculation of carbon fluxes between the atmosphere and terrestrial ecosystems.

Key Words: light use efficiency; vegetation photosynthesis model; croplands; spatial and temporal variations; driving factors

光能利用效率简称为光能利用率,指植被把所 吸收的光合有效辐射转化为有机碳的效率,其单位 一般为gC/MJ^[1]。该参数与植被类型、生育期和环 境条件等有关^[2-4],是基于遥感的光能利用率模型的 关键参数^[5],这类模型通常将植被净初级生产力 (NPP)或总初级生产力(GPP)计算为最大光能利用 率(*ε*_{max})、植被吸收的光合有效辐射(APAR)和温 度、大气湿度以及土壤湿度等环境胁迫因子的乘积。

 ε_{max} 是指植被在没有任何限制的理想条件下对 光合有效辐射的利用率^[6],其大小还受到氮素^[7-8]、 CO₂浓度^[9]和植被类型与品种^[8,10]等的影响。由于 在环境胁迫因子和植被吸收的光合有效辐射比例 (FPAR)计算等方面的差异,现有基于遥感的光能利 用率模型设置的该参数值存在较大的差异。Potter 等^[3]和 Field 等^[4,11]在利用 CASA 模型计算植被净 初级生产力时,假设全球所有植被类型的 ε_{max} 为 0.389 g C/MJ;彭少麟等^[12]在利用 CASA 模型计算 广东省植被生产力时,将 ε_{max} 设为1.25 g C/MJ;朱文 泉等^[6]认为在利用 CASA 模型计算中国农作物的生 产力时, ε_{max} 应设为0.542 g C/MJ;Chen 等^[13]根据12 个通量塔的观测数据推算的 CASA 模型的 ε_{max} 为 1.31—2.91 g C/MJ PAR;Lobell 等^[14]根据美国各县 的产量统计数据估算 NPP,进而推算 CASA 模型中 农田的 ε_{max} 为 0.2—1.0 g C/MJ PAR。Raymond 等^[15]认为在没有气候和其他因素的限制时,光利用 率的上限为 3.5g C/MJ; Ruimy 等^[16]发现 C₃ 作物的 光能利用率范围为 0.85—3.0 g C/MJ, C₄ 作物的光 利用率则可高达 4.8g C/MJ。由此可见, ε_{max} 的取值 还存在很大的分歧,与使用的模型和研究的尺度有 关。因此,确定区域尺度的 ε_{max} 是利用遥感数据和光 能利用率模型计算生态系统生产力必须解决的 问题。

本论文以江苏省为研究区,利用 2001—2010 年 各县区的产量统计数据推算农田 NPP,结合同期的 MODIS 遥感数据和气象观测数据,确定 VPM 光能利 用率模型计算县级尺度总初级生产力的 *ε*_{max}参数,并 分析其时空变化特征及其原因,以期为更好地利用 遥感技术计算农田的碳通量、监测农作物长势提供 参考。

1 研究区概况

江苏省位于长江下游,介于东经116°18′—121° 57′、北纬30°45′—35°20′之间,总面积1.026×10⁵ km²,地形以平原为主,是长江三角洲地区的重要组 成部分(图1)。气候属于暖温带-亚热带气候的过渡 区,冬温夏热,四季分明,年均气温13—16℃,年均降 水量 700—1200 mm,自北向南增加,无霜期平均 200—240 d,由于受季风的影响,气候存在明显的年 际波动^[17]。海岸线长达 954 km,滩涂资源丰富,全 省共有滩涂面积约 6.53×10⁵hm²,占全国滩涂面积的 四分之一^[18]。江苏省的主要农作物有水稻、小麦、 玉米、棉花、大豆、油菜和马铃薯等,大多数地区为一 年两熟制,夏熟作物以冬小麦、大麦和油菜为主,生 长期为10月底到翌年5月;秋熟作物主要有水稻、 玉米和棉花,生长期为5月到10月^[19]。

图 1 研究区示意图 Fig.1 The location of the study area

2 数据与方法

2.1 数据源

本研究所用数据包括地表覆盖数据(欧空局生成的 2009 年 300 m 分辨率的全球地表覆盖数据 GLOBCOVER)、2001—2010 年的 8d 合成的 MODIS 反射率 MOD09A1 数据(由 MODIS 数据中心免费下载 https://lpdacc.usgs.gov/)、气象台站的气象数据 (包括日最高气温、日最低气温、日平均气温、日照时 数等)、2001—2010 年江苏省各县/区的农作物产量 统计数据、DEM 数据、行政边界数据和经纬网数据 等。所有数据都采用 Albers 等面积投影(中央经线 为 105°E、标准纬线分别为 25°N 和 47°N)、WGS84 坐标系进行投影转换到 500m 分辨率。整个研究区 共有1190×1013 像元。

2.2 数据预处理

2.2.1 气象数据处理

对获取的 2001—2010 年江苏省的逐日最高气 温、最低气温、平均气温和日照时数数据采用反距离 权重插值方法(Inverse Distance Weighting, IDW)^[20] 进行插值,生成气象格点数据。对模型所需的日辐 射数据采用以下公式进行求算:

$$S = N \times S_0 \times \cos\theta \times (0.1545 + 0.5489 \times n/N)$$
(1)

式中,S为日太阳总辐射($MJ m^{-2} d^{-1}$), S_0 为太阳常数, θ 为日平均太阳天顶角,n为观测的日日照时数,N为最大日可照时数,与纬度和季节有关。

2.2.2 农业统计数据处理

使用的农业统计数据包括 2001—2010 年江苏 省每一个县级行政单元的农作物播种面积、单产、总 产量数据和化肥施用量等。其中水稻、小麦、大麦、 玉米、油菜、棉花、豆类、高粱、谷子、芝麻、薯类、甜 菜、花生、甘蔗和向日葵等作物的播种面积占江苏省 农作物总收获面积的 79.67%,对这些农作物根据其 产量进行了 NPP 估算。其他农作物(主要是烟草、 蔬菜和瓜果类)的总面积占全省农作物总收获面积 的 20.33%,由于缺少数据和换算方法,在计算每个 行政单元农田 NPP 时没有进行考虑。考虑到城市 郊区地表覆盖复杂且变化大,蔬菜和瓜果种植比例 高的实际情况,本文只对耕地面积/总面积大于 25% 的县区的农田 *ε*max 变化特征进行分析,共选择了 61 个县区。

各研究单元的农田 NPP 计算为^[14,21-22]:

NPP =
$$\sum_{i=1}^{N} \frac{Y_i \times (1M_i) \times C_i}{HI_i \times R_i}$$
(2)

式中,NPP 为估算的一个行政单元内的农作物 NPP 总和;N 是作物种类,等于 15;Y_i是第 *i* 种作物的产 量;M_i是第 *i* 种作物收获部分的含水量;C_i是第 *i* 种 作物收获部分的含碳量;HI_i是第 *i* 种作物的收获指 数(对薯类、甜菜和花生指产量占地下生物量的比例);R_i 是 NPP 分配到地上(除薯类、甜菜和花生以外的作 物)或地下部分(薯类、甜菜和花生)的比例。参考 国内外研究成果^[14,21-25],确定的这些参数值列于 表1。

	쿡	長1 主要农作物	的含水量、含碳比	k例、收获指数和地	上部分的 NPP 比例	
Table 1	Maistura content	anthan fraction	howyoot index	and the natio of al	housemound /holoweround	NDD of motor

Table 1 Mills	ture content, carbon mactio	in, narvest muex, and the	aboveground b	cionground i i i inajor crops
作物类型 Agrotype	含水量 Moisture content	含碳比例 Carbon fraction	收获指数 Harvest index	地上/下部分 NPP 比例 aboveground/belowground NPP
水稻	0.15	0.38	0.43	0.91
小麦	0.15	0.39	0.37	0.90
大麦	0.12	0.45	0.40	0.90
玉米	0.22	0.39	0.44	0.92
油菜	0.10	0.42	0.25	0.94
棉花	0.10	0.40	0.38	0.94
豆类	0.15	0.40	0.44	0.93
高粱	0.09	0.45	0.39	0.92
谷子	0.15	0.39	0.38	0.90
芝麻	0.15	0.40	0.15	0.87
薯类	0.80	0.39	0.71	0.90
甜菜	0.80	0.39	0.69	0.90
花生	0.14	0.38	0.43	0.90
甘蔗	0.68	0.42	0.56	0.95
向日葵	0.10	0.45	0.35	0.90

2.2.3 遥感数据处理

首先将 GLOBCOVER 地表覆盖数据重采样到 500m 分辨率,该数据中有 4 种农作物或农作物/其 他植被混合类型,本研究仅对雨养农田和灌溉农田 两种类型进行统计计算^[26]。

对下载的 MOD09A1 反射率数据进行拼接和投影转换,并利用江苏省行政区划图进行裁剪,得到覆盖江苏省的反射率数据。利用其中的蓝光(459—479nm)、红光(620—670nm)、近红外(841—875nm)和短波红外(1628—1652nm)4个波段的数据,按照

以下公式计算增强型植被指数(EVI)和地表水分指数(LSWI)^[27-28]:

EVI = 2.5 ×
$$\frac{\rho_{\text{nir}} - \rho_{\text{red}}}{\rho_{\text{nir}} + (6 \times \rho_{\text{red}} - 7.5 \times \rho_{\text{blue}}) + 1}$$
(3)

$$LSWI = \frac{\rho_{nir} - \rho_{swir}}{\rho_{nir} + \rho_{swir}}$$
(4)

式中, *ρ* 表示地表反射率, 下标 nir、red、blue 和 swir 分别代表近红外、红光、蓝光和短波红外波段。 (7)

2.3 最大光能利用率的估算

Xiao 等于 2004 年提出的 VPM 模型已成功应用 于模拟森林^[28-31]、高寒草地^[32]、温带草原^[33]和农作 物生态系统^[34-36]的 GPP。VPM 模型的主要算法 如下:

$$GPP = \varepsilon \times FPAR \times PAR \tag{5}$$

$$\varepsilon = \varepsilon_{max} \times T_{scalar} \times W_{scalar} \times P_{scalar}$$
 (6)
式中, ε 是光能利用率(g C/MJ); FPAR 表示植被吸
收的光合有效辐射比例,假设等于 EVI^[28-36]; PAR 是
入射的光合有效辐射(MJ·m⁻²·s⁻¹); T_{scalar} 、 W_{scalar} 和
 P_{scalar} 分别是温度、水分和物候对最大光能利用率
 ε_{max} 的修正因子。

该模型也可用于计算 NPP,即:

$$NPP = r \times GPP$$

式中, r 为农作物 NPP 占 GPP 的比例,本文取值为 0.533^[37]。

利用方程(5)—(7)可以估算一个县区的 ε_{max} ,即:

$$\varepsilon_{\text{max}} = \frac{\text{NPP}}{r \times \sum \text{FPAR} \times \text{PAR} \times T_{\text{scalar}} \times W_{\text{scalar}} \times P_{\text{scalar}}}$$
(8)

2.4 最大光能利用率变化趋势分析 采用线性拟合的方法(y=ax+b)分析 ε_{max}的变化 趋势,即:

$$a = \left[n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i} \right] / \left[n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right]$$
(9)

式中,*n* 代表年数,等于 10,*x_i*代表年份(1,2,3,…, 10),*y_i*为第*i* 年的 *ε*_{max}。当*a* 大于 0 时,表示 *ε*_{max}呈上升趋势,当*a* 小于 0 时,表示 *ε*_{max}呈下降趋势^[38]。

采用变异系数(coefficient of variation, CV)评价 ε_{mx} 的年际波动状况,即:

$$CV = \sqrt{\sum_{i=1}^{n} (\varepsilon_{\max_{i}} - \overline{\varepsilon}_{\max})^{2} / (n-1)} / \overline{\varepsilon}_{\max}$$
(10)

式中, ε_{\max_i} 为第 *i* 年的年均 ε_{\max} , $\overline{\varepsilon}_{\max}$ 为 2001—2010 年的年均 ε_{\max} 的平均值。

3 结果与讨论

2001—2010 年江苏省农作物 ε_{max}的时空分布 特征

2001—2010年间,江苏省各县平均 ε_{max} 的变化 范围为 0.757—3.435 g C/MJ; ε_{max} 的全省平均值为 1.430—2.435 g C/MJ。本文推算的江苏省县域尺度 农田 ε_{max} 表现出明显的时空变化特征(图 2),但介于 前人报道的 0.542 g C/MJ^[6]和 3.5 g C/MJ^[15]之间, 表明本文推算的 ε_{max} 具有可信性。

2004年

2005年

2006年

图 2 根据产量统计和遥感数据推算的 2001—2010 年各县农田年平均 ϵ_{max} (g C/MJ)分布图

Fig.2 Spatial distribution of county-level ε_{max} derived from statistical yield and remote sensing data in Jiangsu province during the period from 2001 to 2010

各县的农田 ε_{max} 均呈现出明显的时间变化特征, 在 2001—2006 年间,各县的 ε_{max} 总体上呈现上升趋势,但波动较大,2002 年的值较 2001 年普遍有所下降,为 10a 最低值;2003 年的 ε_{max} 值较前一年普遍明显上升,其后相对稳定,但 2006 年的 ε_{max} 值又一次下降;而在 2007—2010 年间,各县的 ε_{max} 均呈现明显的增大趋势。

图 3 是估算的各县农田 ε_{max} 在 2000—2010 年期 间的平均值,表现出北高南低、中间高四周较低、南 部最低的分布特征,徐州市、连云港市、宿迁市、淮安 市、盐城市、扬州市、泰州市和南通北部等地的 ε_{max} 的 10a 平均值为 1.8—2.8 g C/MJ,其中南通市的海安 县、泰州市的兴化市、扬州市的高邮市和盐城市的建 湖县等地的 ε_{max} 的 10a 平均值高于 2.4 g C/MJ;而南 京、镇江、无锡、常州和苏州等地的 ε_{max} 的 10a 平均值 为 1.2—1.8 g C/MJ,南京市的浦口区和常州的武进 区 ε_{max} 的 10a 平均值小于 1.2 g C/MJ。

3.2 2001—2010 年江苏省农田 ε_{max}的变化趋势

图 4 是 2001—2010 年江苏省农田年均 ε_{max} 的变 化趋势分布图,可见在此期间江苏省各县农田的 ε_{max} 均呈现出上升趋势,但上升的幅度存在着明显的空

Fig.3 Spatial distribution of county-level ε_{max} averaged over the period from 2001 to 2010 in Jiangsu Province

间差异。在徐州市、宿迁市、淮安市、扬州市、泰州 市、无锡市和连云港市及盐城市的大部分地区, ε_{max} 的每年增加幅度大于 0.05 g C MJ⁻¹ a⁻¹,其中新沂市、 宝应县、张家港市、太仓市、金坛市、邗江区、铜山县、 溧阳市和海安县等地, ε_{max} 的每年增加幅度达到 0.12—0.15 g C MJ⁻¹ a⁻¹, 而赣榆县和盐都区和高邮

图 4 2001—2010年江苏省各县农作物年均 ε_{max}的变化速率(g C MJ⁻¹ a⁻¹)

Fig.4 The change rate of county-level $\varepsilon_{\rm max}$ in Jiangsu Province during the period from 2001 to 2010

2001—2010 年期间,全省农田的 ε_{max} 的平均值 呈现明显上升趋势(图 5),但在 2001—2006 年期间 ε_{max} 的全省平均值存在较大的年际波动,2002 年、 2004 年和 2006 年全省 ε_{max} 的平均值均较低,2002 年 全省 ε_{max} 的平均值为 1.44 g C/MJ,为 10a 最低;在 2007—2010 年期间, ε_{max} 的全省平均值呈现稳定增长 趋势,到 2010 年全省 ε_{max} 的平均值达到 2.41 g C/MJ。

图 5 2001—2010 年江苏省农田 ϵ_{max} 平均值和 C₄作物占总产量的比例的时间变化趋

Fig.5 Temporal trends of provincial mean ε_{max} and the yield fraction of C₄ crops in Jiangsu Province during the period from 2001 to 2010

2001—2010 年期间,江苏省农田 ε_{max} 的年际波动(以 CV 表示)总体呈现北部高、南部低的空间分布特征(图 6)。淮北地区大部分县区 ε_{max} 的 CV 高于 0.18,其中徐州市的铜山县和新沂市、连云港市的赣榆县 ε_{max} 的 CV 高于 0.24;而在泰州市、南通市、南京市、镇江市、无锡市的宜兴市和江阴市、苏州市的常熟市和吴江市等地, ε_{max} 的 CV 一般小于 0.16,其中在南京市的江宁区、溧水县、高淳县和南通市的海门市, ε_{max} 的 CV 值在 0.10 以下,表明这些地区的 ε_{max} 比较稳定。

图 6 2001—2010 年江苏省各县农作物年均 ϵ_{max} 的变异系数 CV 的空间分布

Fig.6 Spatial distribution of CV of the average annual $\varepsilon_{\rm max}$ in each county of Jiangsu Province during 2001–2010

3.3 导致江苏省农田 ε_{\max} 时空差异的可能原因

农田 ε_{max} 受到作物种类、作物品种、管理措施 (化肥和农药施用量等)等多个因子的影响,江淮之 间大部分地区的农田不仅具有较高的 ε_{max} 平均值,而 且增加趋势比其他地区明显(图3,图4),主要是由 于该地区对农业生产高度重视、适宜的气候条件、高 产水稻和小麦品种的大面积种植和得力的管理措施 等原因所致;而在经济发达的苏南地区,近年来农民 种田积极性不高、管理措施不力、夏熟作物中产量相 对较低的油菜面积比例较大、农作物成熟期间阴雨 寡照和大风等气象灾害较多等原因,导致该地区的 ε_{max} 平均值较低,而且增加趋势不明显;淮北地区时 有季节性干旱发生,导致该地区的 ε_{max} 存在明显的年 际波动(图6)。

为了定量评价管理措施对 ε_{max} 的影响,计算了

2001—2010 年各县农田 Emax 与单位耕地面积农用化 肥施用量之间的相关系数(图7)。在江苏北部的徐 州市、连云港市(除东海县)、宿迁市(除泗阳县)、淮 安市(除盱眙县)、盐城市(除建湖县和东台市)、扬 州市(除仪征市)、南通市的海安县、海门市、启东市、 苏州市的常熟市、常州市的金坛市、镇江市的句容 市、南京市的溧水县, Emax 与单位耕地面积农用化肥 施用量之间呈现正相关性,且相关系数普遍大于 0.4,其中睢宁县、邳州市、常熟市、赣榆县、灌云县、 大丰市和沭阳县的相关系数都大于 0.632, 达到 0.05 的显著水平;铜山县、新沂市、金坛市、海安县、楚州 区、金湖县、滨海县、盐都区、刊江区、宝应县、高邮市 和江都市 & 与单位耕地面积农用化肥施用量之间 的相关系数大于 0.765, 达到 0.01 的显著水平。可以 认为江苏北部的大部分县区年均 Emax 的增大主要与 单位耕地面积农用化肥施用量的增加有关。在南部 的南京市、镇江市、常州市、无锡市、苏州市、南通市 和泰州市的大部分县区,农作物的年均 ε_{max} 与单位耕 地面积农用化肥施用量之间呈负相关,其中浦口区、 宜兴市、通州市、东台市、丹阳市、兴化市的相关系数 的绝对值均大于 0.632, 达到 0.05 显著水平, 说明在 这些地区,其他因子对 ε_{max} 的年际波动影响作用 更大。

图 7 2001—2010 年 ϵ_{max} 与单位耕地面积农用化肥施用量之间的相关系数

Fig.7 Correlation coefficients between county-level mean $\varepsilon_{\rm max}$ and the amount of fertilizer applied in per cultivated land area during the period from 2001 to 2010

为了分析化肥施用强度对 ε_{max} 空间差异的作用, 计算了2001—2010 年 61 个县区 ε_{max} 的 10a 平均值 与单位耕地面积农用化肥施用量 10a 平均值之间的 相关系数,为0.112 (N=61),表明化肥施用强度与 ε_{max} 的空间变化之间有一定的关联性,在化肥施用强 度高的地区, ε_{max} 也高,但肥施用强度不是导致 ε_{max} 空间差异的主要原因。进一步分析发现,61 个县区 ε_{max} 的 10a 变化速率与单位耕地面积农用化肥施用 量的 10a 变化速率之间的相关系数为 0.356 (N= 61),已达到 0.01 显著水平,表明化肥施用强度增加 速度的差异是导致 ε_{max} 10a 变化速率空间差异的重 要原因之一。

作物光合途径不同,其光能利用率也有很大差 异,研究发现 C₄ 作物比 C₃ 作物的光能利用率 大^[8,16]。在 2003—2010 年期间全省农田平均 ε_{max} 与 C₄ 作物(玉米等)产量占农作物总产量比例的变化 趋势基本相同(图5),说明 C₄ 作物比例的增加也是 导致全省农田平均 ε_{max} 增加的原因之一。为了分析 C₄ 作物比例对 ε_{max} 空间差异的作用,计算了 2001— 2010 年 61 个县区 ε_{max} 的 10a 平均值与 C₄ 作物产量 占总产量比例的 10a 变化速率之间的相关系数,为 0.106 (N=61),达不到显著水平;进一步分析发现, 61 个县区 ε_{max} 的 10a 变化速率与 C₄ 作物产量比例 的 10a 变化速率之间的相关系数为0.340(N=61), 已达到 0.01 显著水平,表明 C₄ 作物比例的差异也是 导致 ε_{max} 增加空间差异的可能原因之一。这与 Lobell 等^[14]在美国的研究成果基本一致。

本文首先根据农业统计数据推算了各县区农田 的 NPP, 进而估算了 VPM 模型中的 ε_{max} , 分析其时 空变化特征及其可能原因,可为利用该模型提供有 益参考。但是研究存在以下不足,需要予以重视。 在利用产量统计数据推算 NPP 时,收获系数 HI 和 NPP 分配到地上/下部分比例的设置对 NPP 推算结 果有很大影响。研究表明,这两个参数存在很大的 时空变异性,本文根据已有研究成果,根据作物类型 设定这两个参数值,未考虑他们的时空变化,会导致 推算的 NPP 存在一定的不确定性,当然产量统计数 据的误差也是农田 NPP 估算结果不确定性的主要 原因之一。江苏省的土地利用方式复杂,在一个500 m 的像元内存在有多种土地利用方式,本文未考虑 混合像元的影响问题,也会导致得到的 ε_{max} 存在一定 的误差,由于本文的分析是在县级尺度上进行的,混 合像元导致的误差在一定程度上可以得到控制。

VPM 模型认为 FPAR 为 EVI 的线性函数,由于缺乏 FPAR 的实际观测数据,无法确定 FPAR 与 EVI 之间 的比例系统,参照他人研究成果^[28-36],假设 FPAR 等 于 EVI,有时会低估 FPAR,进而使计算的 ε_{max} 偏大。 本文推算的 ε_{max} 还会受到温度、水分和物候胁迫因子 的影响,本文并未对这些因子进行本地化验证,可能 导致 ε_{max} 估算结果的偏差。

 ε_{max} 不仅与作物类型有关,还与作物品种有关, 本文得到的是农田 ε_{max} 的平均值,而不是某一作物类 型和品种的 ε_{max} ,可为区域农田生产力的计算提供参 考,但可能不适用于某一田块或小区域。此外,本研 究仅统计分析了 ε_{max} 时空变化与化肥施用量和 C₄ 作 物比例之间关系,发现随着化肥适用量和 C₄ 作物比 例的增大都会导致 ε_{max} 的上升,主要原因是化肥适用 量的增加必然会导致作物叶片氮含量的上升,引起 光合速率的增大;由于 C₄ 作物的光能利用率明显高 于 C₃ 作物,其比例的上升必然会导致区域农田 ε_{max} 的上升。其它因子如 CO₂浓度上升和新品种的推广 也会导致 ε_{max} 的上升,本文尚未涉及。以上这些不 足,需要在今后的研究中予以解决。

4 结论

本文利用 MODIS 数据、分县产量统计数据和其他地面辅助数据,结合 VPM 模型推算了 2001—2010 年江苏省县级尺度农田计算 GPP 的 *ε*_{max},并分析了 其时空分布特征及其可能原因,得出主要结论如下:

(1)在 2001—2010 年间,江苏省农田的 ε_{max} 存 在明显的时空变化,61 个县区 ε_{max} 的变化范围为 0.757—3.435 g C/MJ,呈现北高南低、中间高四周较 低分布特征。全省 ε_{max} 的平均值约为1.430—2.435 g C/MJ。

(2)在2001—2010年间,江苏省61个县区农田的 ε_{max}均呈现出上升趋势,但在2001—2006年期间 ε_{max}的年际波动较大,2002年、2004年和2006年的 值较低,2007—2010年期间 ε_{max}稳定增大。

(3)在大部分县区,2001—2010年期间 ε_{max} 的年际变化与单位耕地面积农用化肥施用量呈正相关性,在苏北北部尤为明显,单位耕地面积农用化肥施用量的增加是导致 ε_{max} 增大的主要原因之一;2004—2010年全省农田 ε_{max} 的平均值与 C₄作物产量比例的变化趋势有很好的相似性,C₄作物比例增大也是

本研究发现,江苏省农田的 ε_{max} 存在明显的空间 差异,2001—2010 年期间江苏省农田 ε_{max} 明显上升, 就说明在利用光能利用率模型计算农田的 GPP 和 NPP 时,需要考虑 ε_{max} 的时空变化,而现有光能利用 率模型多假设农田的 ε_{max} 为一个恒定值,这就有可能 导致 GPP 和 NPP 计算结果的误差,低估他们的时空 变化趋势。因此,发展更为合理的 ε_{max} 参数化方案是 今后光能利用率模型应用需要解决的一个问题。

References:

- [1] Li G, Wang D L, Zhang H, Zhang H B, Xin X P, Yang G X. Spatiotemporal variations analysis of grassland's light use efficiency in Inner Mongolia based on MODIS data. Journal of Natural Resources, 2010, 25(6): 1001-1012.
- [2] Monteith J L. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 1972, 9(3): 747-766.
- [3] Potter C S, Randerson J T, Field C B, Matson P A, Vitousek P M, Mooney H A, Klooster S A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7(4): 811-841.
- [4] Field C B, Randerson J T, Malmstrom C M. Global net primary production: Combining ecology and remote sensing. Remote Sensing of Environment, 1995, 51(1): 74-88.
- [5] Zhao Y M, Niu S K, Wang J B, Li H T, Li G C. Light use efficiency of vegetation: A review. Chinese Journal of Ecology, 2007, 26(9): 1471-1477.
- [6] Zhu W Q, Pan Y Z, He H, Yu D Y, Hu H B. Simulation of light utilization efficiency of typical vegetation in China. Chinese Science Bulletin, 2006, 51(6): 700-706.
- [7] Xingguo Mo, Suxia Liu. Simulating evapotranspiration and photosynthesis of winter wheat over the growing season. Agricultural and Forest Meteorology, 2001, 109(3): 203-222.
- [8] Tong X J, Li J, Wang L. A review on radiation use efficiency of the cropland. Chinese Journal of Ecology, 2008, 27 (6): 1021-1028.
- [9] Sabine Tausz-Posch, Robert M. Norton, Saman Seneweera, Glenn J. Fitzgerald, Michael Tausz. Will intra - specific differences in transpiration efficiency in wheat be maintained in a high CO₂ world? A FACE study. Physiologia Plantarum, 2012.
- [10] Ainong Li, Jinhu Bian, Guangbin Lei, Chengquan Huang. Estimating the Maximal Light Use Efficiency for Different Vegetation through the CASA Model Combined with Time-Series Remote Sensing Data and Ground Measurements. Remote Sensing, 2012, 4(12): 3857-3876.
- [11] Field C B, Behrenfeld M J, Randerson J T, Falkowski P. Primary production of the biosphere: integrating terrestrial land oceanic

2 期

components. Science, 1998, 281(5374): 237-240.

- Peng S L, Guo Z H, Wang B S. Use of GIS and RS to estimate the light utilization efficiency of the vegetation in Guangdong, China. Acta Ecologica Sinica, 2000, 20(6): 903-909.
- [13] Chen T X, Werf G R, Dolman A J, Groenendijk M. Evaluation of cropland maximum light use efficiency using eddy flux measurements in North America and Europe. Geophysical Research Letters, 2011, 38(14), L14707.
- Lobell D B, Hicke J A, Asner G P, Field C B, Tucker C J, Los S O. Satellite estimates of productivity and light use efficiency in the United States agriculture, 1982—1998. Global Change Biology, 2002, 8(8): 722-735.
- [15] Raymond E, Hunt J R. Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from NDVI. International Journal of Remote Sensing, 1994, 15 (8): 1725-1730.
- [16] Ruimy A, Saugier B, Dedieu G. Methodology for the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research, 1994, 99(D3): 18515-18521.
- [17] Compiling committee of Jiangsu local chorography. Jiangsu chorography · Geographical chorography. Nanjing: Jiangsu Ancient Books Press, 1999.
- [18] Han J P, Xu M. Assessment on exploitation and use of tidal flat in Jiangsu coast. Ocean Development and Management, 2006, 23 (2): 99-102.
- [19] Ju WM, Gao P, Zhou YL, Chen J M, Chen S, Li X F. Prediction of summer grain crop yield with a process-based ecosystem model and remote sensing data for the northern area of the Jiangsu Province, China. International Journal of Remote Sensing, 2010, 6(31): 1573-1587.
- [20] Jin G D, Liu Y C, Niu W J. Comparison between inverse Distance Weighting Method and Kriging. Journal of Changchun University of Technology, 2003, 24(3): 53-57.
- [21] Yan H M. Effects of land use on the productivity and carbon sequestration of China's Agro-Ecosystems based on satellite remote sensing [D]. Beijing: Graduate School, Chinese Academy of Sciences, 2005.
- [22] Huang Y, Zhang W, Sun W J, Zheng X H. Net primary production of Chinese croplands from 1950 to 1999. Ecological Applications, 2007, 17(3): 692-701.
- [23] Zhang F C, Zhu Z H. Harvest index for various crops in China. Scientia Agricultura Sinica, 1990, 23(2): 83-87.
- [24] Su B Y, Zhang L, Chen S B, Wang B X, Jang G M. The spatial and temporal patterns of net primary productivity and its impact factors in regional agro-ecosystem: a case study in Shandong province. Ecology and Environmental Sciences, 2010, 19(9): 2036-2041.
- [25] Guo Z X, Wang Z M, Zhang B, Liu D W, Yang Y, Song K S, Li F. Analysis of temporal-spatial characteristics and factors

influencing vegetation NPP in Northeast China from 2000 to 2006. Resources Science, 2008, 30(8): 1226-1235.

- [26] Li X F, Ju W M, Chen S, Zhou Y L. Influence of land cover data on regional forest leaf area index inversion. Journal of Remote Sensing, 2010, 14(5): 974-989.
- [27] Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L
 G. Overview of the radiometric and biophysical performance of the
 MODIS vegetation indices. Remote Sens Environ, 2002, 83 (1/2): 195-213.
- [28] Xiao X M, Hollinger D, Aber J, Goltz M. Davidson E A, Zhang Q Y, Moore B Satellite-based modeling of gross primary production in an evergreen needle leaf forest. Remote Sens Environ, 2004, 89(4): 519-534.
- [29] Xiao X M, Zhang Q Y, Braswell B. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens Environ, 2004, 91(2): 256-270.
- [30] Xiao X M, Zhang Q Y, Hollinger D, Urbanski S, Boles S, Wofsy S, Moore B, Ojima D Modeling gross primary production of an evergreen needle leaf forest using MODIS and climate data. Ecol Appl, 2005, 15(3): 954-969.
- [31] Xiao X M, Zhang Q Y, Saleska S, Hutyra L, Camargo P D, Wofsy S, Frolking S, Boles S, Keller M, Moore B Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sens Environ, 2005, 94(1): 105-122.
- [32] Li Z Q, Yu G R, Xiao X M, Li Y N, Zhao X Q, Ren C Y, Zhang L M, Fu Y L Modeling gross primary production of alpine ecosystems in the Tibetan Plateau using MODIS images and climate data. Remote Sens Environ, 2007, 107(3): 510-519.
- [33] Wu W X, Wang S Q, Xiao X M, Yu G R, Fu Y L, Hao Y B. Simulation of Inner Mongolia temperate grassland ecosystem gross primary productivity using MODIS image and climate data. Science in China Press, 2008, 38(8): 993-1004.
- [34] Yan H M, Fu Y L, Xiao X M, Huang H Q, He H L, Ediger L. Modeling gross primary productivity for winter wheat-maize double cropping system using MODIS time series and CO₂ eddy flux tower data. Agriculture Ecosystems and Environment, 2009, 129(4): 391-400.
- [35] Wang Z, Xiao X M, Yan X D. Modeling gross primary production of maize cropland and degraded grassland in northeastern China. Agricultural and Forest Meteorology. 2010, 150(9): 1160-1167.
- [36] Kalfas J L, Xiao X M, Vanegas D X, Verma S B, Suyker A E Modeling gross primary production of irrigated and rain-fed maize using MODIS imagery and CO₂ flux tower data. Agricultural and Forest Meteorology, 2011, 151(12): 1514-1528.
- [37] Zhang Y J, Xu M, Chen H, Adams J. Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Global Ecology and Biogeography, 2009, (18), 280-290.

[38] Liu Y B, Ju W M, Chen J M, Zhu G L, Xing B L, Zhu J F, He M Z. Study on the spatial and temporal variations of china's forest leaf area index in 2000—2010. Chinese Science Bulletin, 2012, 57(16): 1435-1445.

参考文献:

- [1] 李刚,王道龙,张华,张宏斌,辛晓平,杨桂霞.基于 MODIS 数据的内蒙古草地光能利用率时空变化分析.自然资源学报, 2010,25(6):1001-1012.
- [5] 赵育民,牛树奎,王军邦,李海涛,李贵才. 植被光能利用率
 研究进展. 生态学杂志, 2007, 26(9): 1471-1477.
- [6] 朱文泉,潘耀忠,何浩,于德永,扈海波.中国典型植被最大 光利用率模拟.科学通报,2006,51(6):700-706.
- [8] 彭少麟, 郭志华, 王伯荪. 利用 GIS 和 RS 估算广东植被光利
 用率. 生态学报, 2000, 20(6): 903-909.
- [17] 江苏省地方志编纂委员会. 江苏省志・地理志. 南京:江苏古 籍出版社, 1999.
- [18] 韩进萍,徐敏. 江苏沿海滩涂开发利用评价. 海洋开发与管理, 2006, 23(2): 99-102.
- [20] 靳国栋, 刘衍聪, 牛文杰. 距离加权反比插值法和克里金插值

法的比较. 长春工业大学学报, 2003, 24(3): 53-57.

- [21] 闫慧敏. 基于遥感观测的土地利用对中国农田生态系统生产 力和碳吸收的影响研究[D]. 北京:中国科学院地理科学与资 源研究所, 2005.
- [23] 张福春,朱志辉.中国作物的收获指数.中国农业科学,1990, 23(2):83-87.
- [24] 苏本营,张璐,陈圣宾,王冰雪,蒋高明. 区域农田生态系统 生产力的时空格局及其影响因子研究——以山东省为例. 生 态环境学报, 2010, 19(9): 2036-2041.
- [25] 国志兴, 王宗明, 张柏, 刘殿伟, 杨桃, 宋开山, 李方. 2000 年—2006 年东北地区植被 NPP 的时空特征及影响因素分析. 资源科学, 2008, 30(8): 1226-1235.
- [26] 李显风,居为民,陈姝,周艳莲.地表覆盖分类数据对区域森 林叶面积指数反演的影响.遥感学报,2010,14(5):974-989.
- [33] 伍卫星,王绍强,肖向明,于贵瑞,伏玉玲,郝彦宾.利用 MODIS影像和气候数据模拟中国内蒙古温带草原生态系统总 初级生产力.中国科学D辑,2008,38(8):993-1004.
- [38] 柳艺博,居为民,陈镜明,朱高龙,邢白灵,朱敬芳,何明珠.
 2000—2010年中国森林叶面积指数时空变化特征.科学通报,2012,57(16):1435-1445.

ACTA ECOLOGICA SINICA Vol. 34 , No. 2 Jan. , 2014 (Semimonthly) CONTENTS

Frontiers and Comprehensive Review

Effects of soil texture on variations of paddy soil physical and chemical properties under continuous no tillage
GONG Dongqin,LÜ Jun (239)
Evaluation of the landscape patterns vulnerability and analysis of spatial correlation patterns in the lower reaches of Liaohe River
Plain
Effects of light and dissolved oxygen on the phenotypic plasticity of Alternanthera philoxeroides in submergence conditions
XU Jianping, ZHANG Xiaoping, ZENG Bo, et al (258)
A review of the relationship between algae and bacteria in harmful algal blooms
······ ZHOU Jin, CHEN Guofu, ZHU Xiaoshan, et al (269)
Biodiversity and research progress on picophytoplankton in saline lakes WANG Jiali, WANG Fang (282)
Effects of ozone stress on major plant physiological functions LIE Ganwen, YE Longhua, XUE Li (294)
The current progress in rodents molecular phylogeography LIU Zhu, XU Yanchun, RONG Ke, et al (307)
The progress in ecosystem services mapping: a review
Autecology & Fundamentals
Growth, and cationic absorption, transportation and allocation of <i>Elaeagnus angustifolia</i> seedlings under NaCl stress
LIU Zhengxiang, ZHANG Huaxin, YANG Xiuyan, et al (326)
Leaf morphology and PS II chlorophyll fluorescence parameters in leaves of Sinosenecio jishouensis in Different Habitats
Response of change of wheat LAI measured with LAI-2000 to the radiance
Effects of K^+ and Cr^{6+} on larval development and survival rate of the acorn barnacle <i>Balanus reticulatus</i>
Diffusion of colorado potato beetle, Leptinotarsa decemlineata, adults in field LI Chao, PENG He, CHENG Dengfa, et al (359)
Population. Community and Ecosystem
Seasonal variations in fish community structure in the Laizhou Bay and the Yellow River Estuary
Variations in fish community structure and diversity in the sections of the central and southern Yellow Sea
SHAN Xiujuan CHEN Yunlong DAI Fanggun et al (377)
Besearch on the difference in eutrophication state and indicator threshold value determination among lakes in the Southern Jiangsu
Province China
Effection of tidal creak system on the expansion of the invasive Sparting in the coastal wetland of Vanchang
HOU Minghang III Hangay ZHANG Hushing (400)
The spatial and temporal variations of maximum light use officiance and possible driving factors of Croplands in Jiangau Province
The spatial and temporal variations of maximum right use enciency and possible driving factors of Croptands in Jiangsu Hovince (10)
Simulation of compared with the statistic brock in China during 1061 2010
Simulation of summer maize yield influenced by potential drought in China during 1961—2010
CAU Yang, YANG Jie, XIONG Wei, et al (421)
rorest change and its impact on the quantity of oxygen release in Heilonghang Province during the Past Century
ZHANG Lijuan, JIANG Chunyan, MA Jun, et al (430)

Soil macro-faunal guild characteristics at different successional stages in the Songnen grassland of China
LI Xiaoqiang, YIN Xiuqin, SUN Lina (442)
Seasonal dynamics of soil microbial biomass in six forest types in Xiaoxing'an Mountains, China
LIU Chun, LIU Yankun, JIN Guangze (451)
Landscape, Regional and Global Ecology
Variation of drought and regional response to climate change in Huang-Huai-Hai Plain 🛛 … XU Jianwen, JU Hui, LIU Qin, et al (460)
Wind speed changes and its influencing factors in Southwestern China
······ ZHANG Zhibin, YANG Ying, ZHANG Xiaoping, et al (471)
Characteristics of soil carbon density distribution of the Kobresia humilis meadow in the Qinghai Lake basin
CAO Shengkui, CHEN Kelong, CAO Guangchao, et al (482)
Life cycle assessment of carbon footprint for rice production in Shanghai CAO Liming, LI Maobai, WANG Xinqi, et al (491)
Research Notes
Seasonal changes of ground vegetation characteristics under artificial Caragana intermedia plantations with age in desert steppe
LIU Rentao, CHAI Yongqing, XU Kun, et al (500)
The experimental study on trans-regional soil replacement
Sensitivity analysis of swat model on changes of landscape pattern: a case study from Lao Guanhe Watershed in Danjiangkou

Reservoir Area WEI Chong, SONG Xuan, CHEN Jie (517)

《生态学报》2014年征订启事

《生态学报》是由中国科学技术协会主管,中国生态学学会、中国科学院生态环境研究中心主办的生态学高级专业学术期刊,创刊于1981年,报道生态学领域前沿理论和原始创新性研究成果。坚持"百花齐放,百家争鸣"的方针,依靠和团结广大生态学科研工作者,探索生态学奥秘,为生态学基础理论研究搭建交流平台,促进生态学研究深入发展,为我国培养和造就生态学科研人才和知识创新服务、为国民经济建设和发展服务。

《生态学报》主要报道生态学及各分支学科的重要基础理论和应用研究的原始创新性科研成果。特别欢 迎能反映现代生态学发展方向的优秀综述性文章;研究简报;生态学新理论、新方法、新技术介绍;新书评价和 学术、科研动态及开放实验室介绍等。

《生态学报》为半月刊,大16开本,280页,国内定价90元/册,全年定价2160元。

国内邮发代号:82-7,国外邮发代号:M670

标准刊号:ISSN 1000-0933 CN 11-2031/Q

全国各地邮局均可订阅,也可直接与编辑部联系购买。欢迎广大科技工作者、科研单位、高等院校、图书 馆等订阅。

通讯地址: 100085 北京海淀区双清路 18 号 电 E-mail: shengtaixuebao@rcees.ac. cn 网

编辑部主任 孔红梅

执行编辑 刘天星 段 靖

址: www.ecologica.cn

话: (010)62941099; 62843362

		生态学报			ACTA ECOLOGICA SINICA
		(SHENGTAI XUEBAO) (半月刊 1981年3月创刊)			(Semimonthly, Started in 1981)
	第	34卷 第2期 (2014年1月)			Vol. 34 No. 2 (January, 2014)
编	辑	《生态学报》编辑部 E 地址:北京海淀区双清路 18 号 邮政编码:100085 电话:(010)62941099 www.ecologica.cn shengtaixuebao@rcees.ac.cn	dited b	y E A A T	ditorial board of ACTA ECOLOGICA SINICA dd:18,Shuangqing Street,Haidian,Beijing 100085,China el:(010)62941099 ww. ecologica.cn
主	编	王如松	ditor in chia	sł FW	ANC Buseng
主 主	管办	中国科学技术协会 ¹² 中国生态学学会 Su	upervised b	y C	hina Association for Science and Technology
-	9) ,	中国科学院生态环境研究中心 SI 地址:北京海淀区双清路 18 号 邮政编码:100085	ponsored b	oy E R A	cological Society of China esearch Center for Eco-environmental Sciences, CAS dd:18,Shuangqing Street,Haidian,Beijing 100085,China
出	版	4 4 点 上 P 地址:北京东黄城根北街16号 邮政编码:100717	ublished b	oy So A B	cience Press .dd:16 Donghuangchenggen North Street, .eijing 100717,China
印	刷	北京北林印刷厂 P	rinted b	y B	eijing Bei Lin Printing House,
发 订 国外发	行购行	4 4 点 点 地址:东黄城根北街 16 号 D 邮政编码:100717 电话:(010)64034563 E-mail:journal@cspg.net 全国各地邮局 中国国际图书贸易总公司 地址:北京 399 信箱 型型:200011	omestic	B by So A So To E A	eijing 100083, China cience Press dd:16 Donghuangchenggen North treet, Beijing 100717, China el:(010)64034563 mail:journal@ cspg. net Il Local Post Offices in China biga International Book Trading
广告经 许 可	È营 证	□□□或:mi+j:100044 京海工商广字第 8013 号		C A	orporation dd:P. O. Box 399 Beijing 100044, China

ISSN 1000-0933 CN 11-2031/0

国内外公开发行

国内邮发代号 82-7

国外发行代号 M670

定价 90.00 元