ISSN 1000-0933 CN 11-2031/Q

自念美玩 Acta Ecologica Sinica

第32卷 第4期 Vol.32 No.4 2012

中国生态学学会 主办 中国科学院生态环境研究中心 *科 译 出 版 社* 出版

生态学报

(SHENGTAI XUEBAO)

中国科学院科学出版基金资助出版

第 32 卷 第 4 期 2012 年 2 月 (半月刊)

次

目

围垦对南汇东滩湿地大型底栖动物的影响 马长安,徐霖林,田 伟,等(1007)
基于 ArcView-WOE 的下辽河平原地下水生态系统健康评价 孙才志,杨 磊 (1016)
京郊典型集约化"农田-畜牧"生产系统氮素流动特征 侯 勇,高志岭,马文奇,等(1028)
不同辐射条件下苹果叶片净光合速率模拟 高照全,冯社章,张显川,等(1037)
藏北高原典型植被样区物候变化及其对气候变化的响应 宋春桥,游松财,柯灵红,等(1045)
祁连山中段林草交错带土壤水热特征及其对气象要素的响应 唐振兴,何志斌,刘 鹄(1056)
祁连山青海云杉林冠生态水文效应及其影响因素 田风霞,赵传燕,冯兆东,等(1066)
呼伦贝尔沙地樟子松年轮生长对气候变化的响应 尚建勋,时忠杰,高吉喜,等(1077)
结合激光雷达分析上海地区一次连续浮尘天气过程 马井会,顾松强,陈 敏,等(1085)
福建中部近海浮游动物数量分布与水团变化的关系 田丰歌,徐兆礼(1097)
香港巨牡蛎和长牡蛎幼虫及稚贝的表型性状 张跃环,王昭萍,闫喜武,等(1105)
东海原甲藻与中肋骨条藻的种间竞争特征李 慧,王江涛(1115)
起始生物量比对3种海洋微藻种间竞争的影响魏杰,赵文,杨为东,等(1124)
不同磷条件下塔玛亚历山大藻氮的生态幅
秦岭天然次生油松林冠层降雨再分配特征及延滞效应陈书军,陈存根,邹伯才,等(1142)
伊犁河谷北坡垂直分布格局及其与环境的关系——一种特殊的双峰分布格局
濒危种四合木与其近缘种霸王水分关系参数和光合特性的比较 石松利,王迎春,周红兵,等(1163)
干旱胁迫下黄土高原4种乡土禾草抗氧化特性 单长卷,韩蕊莲,梁宗锁(1174)
施加角担子菌 B6 对连作西瓜土壤微环境和西瓜生长的影响 肖 逸,王兴祥,王宏伟,等(1185)
内蒙古典型草原区芨芨草群落适生生境
盐渍化灌区土壤盐分的时空变异特征及其与地下水埋深的关系 管孝艳,王少丽,高占义,等(1202)
黄土高原水蚀风蚀交错区坡地土壤剖面饱和导水率空间异质性 刘春利,胡 伟,贾宏福,等(1211)
松嫩平原玉米带农田土壤氮密度时空格局 张春华,王宗明,居为民,等(1220)
小麦冬性强弱评价体系的建立
唐家河自然保护区高山姬鼠和中华姬鼠夏季生境选择的比较 黎运喜, 张泽钧, 孙宜然, 等 (1241)
西花蓟马在6种蔬菜寄主上的实验种群生命表 曹 宇,郅军锐,孔译贤(1249)
同位素富集-稀释法研究食性转变对鱼类不同组织 N 同位素转化率的影响
基于生态网络分析的南京主城区重要生态斑块识别 许文雯,孙 翔,朱晓东,等(1264)
珠三角城市绿地 CO2通量的季节特征 孙春健,王春林,申双和,等(1273)
污染场地地下水渗流场模拟与评价——以柘城县为例 吴以中,朱沁园,刘 宁,等(1283)
专论与综述
湿地退化研究进展
绿洲农田氮素积累与淋溶研究述评 杨 荣,苏永中,王雪峰(1308)
问题讨论
抗辐射菌 Deinococcus radiodurans 的多样性 屠振力,方俐晶,王家刚 (1318)
平茬措施对柠条生理特征及土壤水分的影响 杨永胜,卜崇峰,高国雄 (1327)
研究简报
祁连山典型灌丛降雨截留特征
野生鸭儿芹种子休眠特性及破除方法
期刊基本参数:CN 11-2031/Q * 1981 * m * 16 * 348 * zh * P * ¥70. 00 * 1510 * 36 * 2012-02

封面图说: 遗鸥群飞来——遗鸥意即"遗落之鸥"(几乎是最后才被发现的新鸥种,因此得名)。1931 年,瑞典动物学家隆伯格 撰文记述在中国额济纳采到了标本。1987 年,中国的鸟类学家在鄂尔多斯的 桃力庙获得了一对遗鸥的标本。1990 年春夏之交,发现了湖心各岛上大量的遗鸥种群。近年来的每年夏季,大约全球 90% 以上的遗鸥都会 到陕西省神 木县境内的沙漠 茨水湖-红碱读上、泉集。遗园——国家一级重点保护、CITES 附录一物种。

彩图提供:陈建伟教授 国家林业局 E-mail: cites. chenjw@163. com

DOI: 10.5846/stxb201012271851

刘春利,胡伟,贾宏福,邵明安.黄土高原水蚀风蚀交错区坡地土壤剖面饱和导水率空间异质性. 生态学报,2012,32(4):1211-1219. Liu C L, Hu W, Jia H F, Shao M A. Spatial heterogeneity of soil saturated hydraulic conductivity on a slope of the wind-water erosion crisscross region on the Loess Plateau. Acta Ecologica Sinica,2012,32(4):1211-1219.

黄土高原水蚀风蚀交错区坡地土壤剖面饱 和导水率空间异质性

刘春利^{1,2}, 胡 伟³, 贾宏福², 邵明安^{4,*}

(1.中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,杨凌 712100;
2.山东大学威海分校,威海 264209;3.中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室,北京 100101
4.中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京 100101)

摘要:在黄土高原水蚀风蚀交错区坡面(40 m×350 m)尺度上进行网格(10 m×10 m)取样,用经典统计学和地统计学相结合研究 了 180 个土壤剖面(0—200 cm)各土层扰动土饱和导水率(*Ks*)的空间异质性及分布格局。结果表明:0—20 cm 土层的*Ks*值 (5.36×10⁻³ cm/s)最大,>20—200 cm 各土层的*Ks*值均小于表层,其值介于4.32×10⁻³—4.76×10⁻³ cm/s 之间。各土层*Ks*的变 异程度相近,均属于中等变异。>20—200 cm 各土层*Ks*的 Kriging 插值图分布格局也表现出一致性,因此可用>20—40 cm 土层 的*Ks*值来代表深层*Ks*值对土壤水分运动进行模拟。除了 0—20 cm 的*Ks*的基台值(*C*+*C*₀)为 0.154,其它各土层基台值介于 0.202—0.276之间,说明 0—20 cm 的*Ks*空间异质性小于>20—200 cm 各土层。从比值 *C*/(*C*+*C*₀)来看,0—20 cm 属于中等自 相关,>20—200 cm 土层属于强的空间自相关性,同样也验证了黄土高原水蚀风蚀交错区土壤剖面饱和导水率具有空间变异 特征。

关键词:黄土高原;水蚀风蚀交错区;地统计学;空间自相关;异质性

Spatial heterogeneity of soil saturated hydraulic conductivity on a slope of the wind-water erosion crisscross region on the Loess Plateau

LIU Chunli^{1,2}, HU Wei³, JIA Hongfu², SHAO Mingan^{4,*}

1 State Key Laboratory of Soil Erosion and Dry Land Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences& Ministry of Water Resource, Yangling 712100, China

2 Shandong University, Weihai 264209, China

- 3 Key Laboratory of Water Cycle and Related Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- 4 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Abstract: Soil water is the key factor for plant growth and vegetation restoration on the steeper slopes of the Loess Plateau. Soil hydraulic properties govern the transport of water and nutrients in soils. Spatial heterogeneity of the soil saturated hydraulic conductivities (Ks) determines water infiltration and redistribution in the soil profile. In order to accurately simulate soil water movement in the soil profiles occurring in a particular area or region, an accurate understanding of the spatial heterogenic distribution patterns of Ks is needed. Classical statistics and geo-statistical methods were used to study

收稿日期:2010-12-27; 修订日期:2011-07-11

基金项目:中国科学院创新团队国际合作伙伴计划项目;国家自然科学基金项目(41071156,41001131);中国科学院水利部西北水土保持研究所 黄土高原土壤侵蚀与旱地农业国家重点实验室基金(10501-302)

^{*} 通讯作者 Corresponding author. E-mail: mashao@ms. iswc. ac. cn

spatial heterogeneity and distribution patterns of Ks of disturbed soil samples taken from 180 soil profiles (0-200 cm), at 20 cm depth increments, on a slope covering an area of 40 m × 350 m in the Wind-Water Erosion Crisscross Region on the Loess Plateau, using a grid sampling method with a grid unit of 10 m \times 10 m. Results showed that the mean value of Ks $(5.36 \times 10^{-3} \text{ cm/s})$ for the 0–20 cm soil layer was greater than the mean values for layers between 20 and 200 cm, and that the values for each soil layer below 20 cm ranged from 4.32×10⁻³ to 4.76×10⁻³ cm/s. The variation coefficients for each soil layer below 20 cm were similar, ranging from 0.48 to 0.57, which implies that they were all moderately variable. The distribution patterns of kriged Ks values were also similar for the various layers. Therefore, the value of Ks determined for the 20-40 cm soil layer alone could be used to predict soil water movement instead of determining and using those of the deeper layers in order to simulate water movement in the whole soil profile. The semi-variation function of the distribution patterns for Ks at 0-20 cm and at 140-160 cm could be fitted by a spherical and a Gaussian model, respectively, while those at other layers could all be fitted by exponential models. The range value of the semi-variation function at 0-20 cm was 45.9 m, while for each soil layer below 20 cm the range value varied from 13.8 to 22.8 m. This implies that, in order to effectively show the spatial variability of Ks using the least number of samples to accurately characterize the spatial variability of Ks in the soil profile, we could increase the separation distance and decrease the sampling density by taking samples from the 0-20 cm soil layer. However, the separation distance should be decreased and the sample density increased for representative soil layers below 20 cm depth. The semi-variation function model parameter value of $C+C_0$ at 0–20 cm was 0.154, and these ranged from 0.202 to 0.276 below the 20 cm soil depth. The $C/(C+C_0)$ ratio was 55% for the 0–20 cm soil layer, implying moderate spatial autocorrelation. In contrast, the values of $C/(C+C_0)$ ratio were between 82% and 95% for soil layers below 20 cm depth, which showed a high degree of spatial autocorrelation. The distribution patterns of the values of $C + C_0$ and $C/(C + C_0)$ ratio both indicate spatial variability characteristics of the Ks values in the soil profiles in the Wind-Water Erosion Crisscross Region on the Loess Plateau. The spatial heterogeneity of the 20-200 cm soil layer was greater than that of the 0-20 cm soil layer. Our research suggests a more efficient way to sample and determine the spatial variability of Ks on slopes, which would also provide a means to derive accurate information about soil water distribution within soil profiles and across local landscapes.

Key Words: the Loess Plateau; wind-water erosion crisscross region; geo-statistics; spatial autocorrelation; heterogeneity

土壤水分是黄土高原植物生长和植被恢复的主要限制因子。提高黄土坡面土壤水分利用效率,确定合理 植被恢复方案是黄土区生态环境建设的重要内容。黄土区土壤水分强烈的空间变异特征,是影响植被合理配 置和土壤水分有效利用的关键因子。不同尺度下,影响土壤水分空间变异的因素不同。流域尺度上,气候和 土壤母质是影响土壤水分空间变异的主要因素。坡面尺度上,土壤导水参数则是影响降雨入渗和径流分布的 主要因素^[1],此外,在水土流失和侵蚀预报模型中,均利用导水参数的均值进行模型预测^[2],研究表明土壤导 水参数异质性在土壤侵蚀和水土流失预测模型中不容忽视^[3]。国内外研究学者近几年对*Ks*的异质性做了较 多研究^[4-12],相关研究表明,坡面表层和次表层*Ks*在坡长方向具有较强的空间变异结构和空间自相关 性^[13-17],也证实了饱和导水率空间异质性是土壤水分运动模拟中必须考虑的因素^[18]。在土壤剖面上,土壤饱 和导水率(*Ks*)的空间异质性是决定土壤水分入渗和再分布的主要因素^[19]。在研究剖面土壤溶质迁移和水分 运动时,需要考虑土壤导水参数的异质性。目前国内外对剖面土壤*Ks*空间异质性的系统研究报道尚少。

水蚀风蚀交错带位于黄土区半干旱草原和荒漠草原过渡地带,风沙地貌和流水侵蚀地貌交错分布,形成 了农牧交错和水蚀风蚀共同作用的特殊地区。此区域坡面土壤饱和导水率前期的研究结果^[16]发现,表层原 状土饱和导水率沿坡长方向存在一定的空间变异结构,其研究结果对土壤水分的动态模拟提供了初步的理论 依据。为了对土壤剖面水分分布进行更为精确地模拟,需要对土壤剖面 Ks 进行系统的研究。在坡面尺度上 进行土壤剖面(0—200 cm)原状土 Ks 的系统研究,工作量巨大,操作可行性低。前期研究也表明在此研究区 土壤剖面原状土 Ks 的值与扰动土差异不大^[20],因此,可利用土壤剖面扰动土 Ks 的分异规律探讨原状土 Ks 的分布特征。因此,本研究采用地统计学中的区域化变量,对水蚀风蚀交错带六道沟流域一典型坡面 180 个样点剖面(0—200 cm)扰动土 Ks 的空间变异结构进行了系统地分析,研究结果不仅有助于坡面尺度上原状土土壤饱和导水率空间变异规律的获取和掌握,同时为土壤剖面水分的分布和有效利用提供科学依据。

1 研究方法

1.1 研究区概况

试验区位于神木县以西 14 km 处的六道沟小流域,E 110°21′—110°23′,N 38°46′— 48°51′,海拔 1094.0—1273.9 m,北依长城,地处毛乌素沙漠边缘,属于黄土高原水蚀风蚀交错带的强烈侵蚀中心,流域面积 6.69 km²。该区年平均降水量 437.4 mm,年内年际变化大,7—8 月份降水量最多,约占全年降水量的 50% 以上。地貌类型为片沙覆盖的梁峁状黄土丘陵,地面组成物质以第四纪黄土沉积物为主。本研究在六道沟流域选取一个典型的坡面(图 1A),山体走向大体为东西方向,坡长 350 m,坡顶海拔 1256 m,整个坡面除了距坡顶 110 m 左右较陡外,其它坡度为 20°左右。

1.2 采样方法

2003 年7月,在所选取的典型试验坡面上,根据坡面地形分布沿坡横向每隔10m依次选取5列,每列从上到下,依次隔10m布设一个取样点,共5列36行,180个测点,分布在面积为40m×350m的区域内。用直径为3 cm的土钻在每个取样点自表层开始,每隔20 cm取土样保存,取样深度为200 cm。土样风干、磨细、过0.25 mm筛后,采用定水头法测定扰动土土壤饱和导水率(图1)。

图1 采样坡面图片及样点分布图

Fig. 1 Photo of sampling area and distributions of soil sampling points A: 采样点;B:样点分布

1.3 数据分析

土壤饱和导水率的空间变异研究采用地统计学方法,半变异函数是地统计学中进行空间变量变异特征分析的主要工具。本研究对获得的各层 Ks 空间位置数据,用变异函数分析方法建立变异函数理论模型,然后通过模型中的变程(α)、块金值(C₀)、拱高(C)、基台值(C + C₀),空间变异结构比(C/(C + C₀))等参数来定量地分析 Ks 的空间变化规律^[21],并使用 Kriging 空间局部插值法估计和比较各土层 Ks 的空间分布特征。有关地统计学半变异函数的原理和方法参见文献^[22-23]。文中所有的统计计算和理论模型拟合及绘制空间插值图分别在 SPSS13.0 和 Surfer10.0 中完成。

结果与分析

1214

2

2.1 土壤剖面饱和导水率的统计分析

土壤质地和容重是土壤的固有属性,对土壤导水参 数具有一定地影响作用。土壤质地在土壤剖面上变化 较小,本研究只对 0—20 cm 土壤质地进行分析。按国 际制土壤分类标准,研究区土壤均属于壤质砂土。研究 区土壤容重均值为 1.48 g/cm³,土壤容重最大值出现在 180—200 cm 土层深度。土壤剖面容重和饱和导水率 相关性研究发现(图 2),土壤饱和导水率的变化与土壤 容重大小并无明显的相关性,随着土层的增加,土壤容 重呈现增加的趋势,而除 0—20 cm 土层外,在 20—200 cm 土层,Ks 并没有显著的变化,表明此研究区域剖面 土壤容重对扰动土土壤饱和导水率无显著影响。

研究区土壤剖面 Ks 的描述性统计结果(表 1)表明,各土层 Ks 均值最大值出现在 0-20 cm 土层,值为

图 2 土壤饱和导水率和土壤容重在土壤剖面上的分布规律 Fig. 2 Distribution of soil saturated hydraulic conductivity and soil bulk density in the soil profile

5.36×10⁻³ cm/s。0—120 cm,随土层深度的增加,各土层 Ks 均值呈下降趋势,在土层 100—120 cm 达到最低, 其值为4.32×10⁻³ cm/s。120—200 cm 土层,除 160—180 cm 土层 Ks 较小外,120—140 cm,140—160 cm 和 180—200 cm 土层的 Ks 值均较大,值分别为4.64×10⁻³ cm/s,4.71×10⁻³ cm/s 和4.76×10⁻³ cm/s,Ks 具有随土 层的增加而增大的趋势。整体而言,在土壤剖面上,Ks 具有先减小后增加的变化趋势。Ks 最大变幅出现在 180—200 cm 和60—80 cm 土层,变幅分别为14.93×10⁻³ cm/s 和14.92×10⁻³ cm/s。土壤剖面各土层 Ks 变异 系数介于 0.39—0.57 之间,均为中等变异,表明土壤剖面各土层 Ks 变异不大。LSD 显著性检验进一步表明, Ks 均值最大的土层 0—20 cm 与其它各土层的 Ks 均存在显著差异,土壤剖面 20—200 cm 各土层之间不具有 显著性差异(P<0.05)。

	$Ks/(\times 10^{-3} \text{cm/s})$					伯康亥粉	收座互粉	变异系数	
⊥/云 — Soil depth/cm	均值 Mean	最大值 Maximum	最小值 Minimum	中值 Median	变幅 Range	标准差 Std.	- 個度余奴 Skewness	暉度系数 Kurtosis	Coefficient of Variance
0—20	5.36a	11.30	1.71	5.02	9.59	2.08	0.74	0.26	0.39
20—40	4.56b	13.48	1.03	3.89	12.45	2.49	1.34	1.77	0.55
40—60	4.58b	14.68	1.25	3.87	13.43	2.50	1.55	3.03	0.55
60—80	4.47b	15.95	1.04	3.72	14.92	2.53	1.59	3.07	0.57
80—100	4.33b	13.64	1.55	3.83	12.09	2.18	1.57	3.09	0.50
100—120	4.32b	11.87	1.14	4.10	10.73	2.08	0.92	0.98	0.48
120—140	4.64b	14.90	1.59	4.05	13.31	2.42	1.54	2.84	0.52
140—160	4.71b	14.51	1.48	4.10	13.03	2.70	1.48	2.07	0.57
160—180	4.38b	14.95	1.28	3.61	13.67	2.34	1.61	3.01	0.53
180-200	4.76b	16.29	1.35	3.88	14.93	2.60	1.63	3.43	0.55

表 1 各土层土壤饱和导水率统计描述 Table 1 Statistical parameters of soil saturated hydraulic conductivity in different layers

平均值(cm/s)后的字母为多重比较结果,两两之间若有一个字母相同,表示差异不显著(P<0.05)

2.2 土壤剖面饱和导水率空间变异函数分析

采用 SPSS13.0 中的单样本柯尔莫哥洛夫-斯米诺夫(One-sample Kolomogorov-Semirnov, KS) 对剖面各土 层土壤饱和导水率进行检验。结果表明,0—200 cm 各土层 Ks 样本值均不符合正态分布,对数转换后各土层 Ks 样本值均呈正态分布(P<5%),因此以下地统计分析是基于对数转换后的 Ks 数据。

用地统计区域化变量分别对土壤剖面各土层 Ks 进行拟合,得到各土层变异函数曲线(图3)及最佳模型

图3 各层土壤饱和导水率半方差图

Fig. 3 Semivariograms of soil saturated hydraulic conductivity in different layers in the soil profile

32 卷

拟合结果(表2)。从图3和表2的分析结果来看,除0—20 cm和140—160 cm土层可分别用球状模型和高斯 模型拟合外,其它土层均可用指数模型拟合。其中,0—20 cm球状理论模型拟合的决定系数较高,值为 0.933,说明球状模型能很好地反映该土层 Ks 的空间结构特征。20—40 cm、80—100 cm、120—140 cm的决定 系数分别为0.732、0.681和0.666,说明指数模型也能较好地反映这些土层 Ks 的空间变异结构。

块金值(*C*₀)表示随机部分的空间异质性,由实验误差和小于实验取样尺度引起的变异,较大的块金方差 表明较小尺度上的某种过程不容忽视^[24],*C*表示系统变异的空间异质性。研究区各土层*Ks*的块金值(*C*₀)均 较小,说明随机部分的异质性较小。基台值(*C*+*C*₀)是半方差函数随间距增加到一定程度后出现的平稳值, 其大小反映研究对象空间异质性的高低,基台值越大总的空间异质性程度越高。在 0—20 cm 土层,*Ks*的基 台值为 0.15,其它各土层基台值介于 0.20—0.28 之间,最小值出现在 80—100 cm,最大值出现在 140—160 cm 土层。表明水蚀风蚀交错区坡面土壤表层*Ks*空间异质性均小于其它土层,且 20 cm 以下的各土层*Ks*空 间异质性程度较为集中,空间异质性结构格局基本相似。

变程(α)是描述空间异质性尺度的有效参数,变程的确定可以为研究取样尺度提供理论依据。0—20 cm 土层空间异质性变程相对最大,可达 45.90 m。相对而言,其它土层空间异质性尺度较小,变化范围在 13.80—22.80 m。由此表明,为了达到既能反映 Ks 的空间结构,又尽量减小采样数的目的,在 0—20 cm 采样 时,需要增大采样间距和减小采样密度,而对于剖面深层的采样则相对增加采样个数,减小采样间距。

	Sennvariogra	in mouel and par	afficients of som	saturateu nyurat	inc conductivity i	i unierent laye	15
土层 Soil depth/cm	最适模型 Optimum model	有效变程 Effective range/m	基底值 <i>C</i> 0	基台值 <i>C</i> +C ₀	<i>C</i> / <i>C</i> + <i>C</i> ₀	R^2	RSS
0—20	球状	45.90	0.069	0.154	0.55	0.933	2.685×10^{-4}
20—40	指数	56.70	0.012	0.248	0.95	0.732	7.741×10^{-4}
40—60	指数	45.90	0.016	0.242	0.93	0.454	1.006×10^{-3}
60—80	指数	41.40	0.019	0.259	0.93	0.310	1.491×10^{-3}
80—100	指数	52.20	0.016	0.202	0.92	0.681	4.77×10^{-4}
100—120	指数	60.30	0.015	0.235	0.94	0.547	2.204×10^{-3}
120—140	指数	68.40	0.022	0.223	0.90	0.666	1.531×10^{-3}
140—160	高斯	27.61	0.051	0.276	0.82	0.599	2.893×10^{-3}
160—180	指数	48.60	0.029	0.233	0.88	0.478	1.015×10^{-3}
180—200	指数	63.90	0.031	0.252	0.88	0.511	2.884×10^{-3}

表 2 各土层土壤饱和导水率变异函数模型及相关参数 Table 2 Semivariagram model and parameters of soil seturated hydraulic conductivity in different layer

2.3 土壤剖面饱和导水率空间异质性

为了进一步研究坡面土壤剖面 Ks 在不同土层内的变异特征和空间分布,本研究进一步分析了空间变异 结构比。C/(C+C₀),该参数反映自相关部分的空间异质性占总空间异质性的程度^[22]。Cambardella 等^[25]研究认为:(C/(C+C₀)>75%,说明系统具有强烈的空间相关性;比值在 25%—75%间,表明系统中等相关; C/(C+C₀)<25%,说明系统相关性很弱。表层0—20 cm 的 C/C+C₀为0.55,即表明0—20 cm 的 Ks 空间变 异属于中等相关,其由随机因素引起的空间异质性为 45%,由空间自相关引起的空间异质性为 55%。20—40 cm 土层空间变异结构比最大,值为 0.95,即由空间自相关性引起的空间异质性为 95%,而由随机因素引起的 空间异质性为 5%。比值 C/(C+C₀)相对较小的为 140—160 cm 土层,其值为 0.82,即由空间相关性引起 的空间异质性为 82%,由随机因素引起的空间异质性为 18%。总体来看,20—200 cm 土层内,各土层比值 C/ (C+C₀)介于 82%—95%之间,均大于 75%,说明 20—200 cm 土层具有强的空间自相关性,因此土壤剖面 Ks 空间异质性在土壤水分运移研究中是不能忽视的。

2.4 土壤剖面饱和导水率的空间分布格局

为了更直观地反映土壤饱和导水率的这种分布特征,利用 Kriging 方法在 Surfer10.0 软件中绘制了各土 层土壤饱和导水率等值线图。依据变异函数理论模型进行空间插值估计的克立格图(图4)可看出,坡面各土

1217

层 Ks 的空间分布特征具有一定程度的相似性,斑块形状的复杂程度也相似,这与此研究区土壤剖面水分空间 变异结构一致^[26-27]。坡面各土层土壤饱和导水率均在坡顶,距坡顶 140 m 左右及距坡顶 300—350 m 处的 Ks 值空间分布斑块面积较小,斑块的复杂程度较高,相应地 Ks 的值也较大。

3 结论与讨论

(1)在黄土高原水蚀风蚀交错区坡地土壤剖面上,表层 0—20 cm 的 Ks 均值最大,为 5.36×10⁻³ cm/s,

32 卷

20—200 cm 各土层 Ks 相比表层则较小,均值范围介于 4.32×10⁻³—4.76×10⁻³ cm/s 之间,各土层 Ks 均值较为 接近。表层土壤可能由于受植被根系影响,致使其 Ks 值偏大,土壤剖面其它土层 Ks 值则偏于一致。各土层 Ks 变异系数均属于中等变异,变异系数变幅较小,Kriging 插值也表明,各土层 Ks 具有相似的空间分布特征。因此在水蚀风蚀交错带剖面土壤水分和溶质运移的研究中,为了减少实验人力物力的投入,可用 20—40 cm 土层 Ks 值来代替剖面深层 Ks 值进行模型预测,不需要对深层 Ks 进行取样测定。

(2)在土壤剖面上,土层 0—20 cm 和 140—160 cm 可分别用球状模型与高斯模型拟合外,其它土层的 Ks 均可用指数模型拟合。0—20 cm 土层空间变异结构变程值相对较大,可达 45.90 m,其它土层空间异质性尺度变化范围在 13.80—22.80 m。因此在对深层土壤饱和导水率进行研究时,为了利用最少的样本反映土壤饱和导水率的空间结构,在 0—20 cm 采样时,可增加采样间距和减小采样密度,剖面深层的采样数则应相对增加,而减小采样间距。0—20 cm 土层,土壤饱和导水率基台值为 0.154,结构性变异所占比例 C/(C+C_0)为 55%,属于中等空间自相关,20—200 cm 各土层基台值均比表层大,值范围介于 0.202—0.276 之间,比值 C/(C+C_0)介于 82%—95%,均具有强的空间变异结构。基台值和比值 C/(C+C_0)均表明在黄土高原水蚀风蚀区土壤剖面饱和导水率具有空间变异结构,且 20—200 cm 各土层空间自相关程度均高于表层土壤,进一步验证了土壤剖面饱和导水率的异质性不容忽略。

(3)本文研究区域属典型的风沙侵蚀和水土侵蚀共同作用的黄土地貌,坡地土壤剖面由于多年特殊的成 土作用,土壤质地、容重等影响土壤饱和导水率的其它因子都存在相应的变异。在本项研究中虽然剖面土层 采样较深,但将土壤下垫面看为均质的,没有考虑土壤质地、植物根系、孔隙洞穴等因素的影响,因此不能够很 好地解释剖面土壤饱和导水率空间分异的主要原因。另外,本文采样范围40 m×350 m,采样间隔10 m×10 m,今后在该区域的相关研究中应扩大取样范围,增加小于10 m×10 m尺度与大于10 m×10 m尺度的样点, 来确定土壤剖面各土层土壤饱和导水率的空间变异结构。同时,在时间序列上可增加不同时间(季节)或植 被生长阶段的取样,以便较全面地认识水蚀风蚀交错区土壤饱和导水率的空间变异性。另外在以后的研究 中,需要进一步将土壤饱和导水率与土壤水分、土壤孔隙结构、植被覆盖、土壤侵蚀等其它因素和过程结合起 来进行研究,以确定影响土壤饱和导水率的主要因素。

致谢:David Warrington 润色英文摘要,特此致谢。

References :

- [1] Lian G, Guo X D, Fu B J, Hu C X. Spatial variability of bulk density and soil water in a small catchment of the Loess Plateau. Acta Ecologica Sinica, 2006, 26(3): 647-654.
- [2] Kim C P, Stricker J N M. Influence of spatially variable soil hydraulic properties and rainfall intensity on the water budget. Water Resource Research, 1996, 32(6): 699-712.
- [3] Alletto L, Coquet Y. Temporal and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management systems. Geoderma, 2009, 152(1/2): 85-94.
- [4] Wang C, McKeague J A, Topp G C. Comparison of estimated and measured horizontal Ksat values. Canadian Journal of Soil Science, 1985, 65 (4): 707-715.
- [5] Fares A, Alva A K, Nkedi-Kizza P, Elrashidi M A. Estimation of soil hydraulic properties of a sandy soil using capacitance probes and Guelph permeameter. Soil Science, 2000, 165(10): 768-777.
- [6] Bormann H, Klaassen K. Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils. Geoderma, 2008, 145(3/4): 295-302.
- [7] Chen X M, Mao Z S, Liu Z P, Xu Z X. Preliminary study on saturated hydraulic conductivity of seashore saline soil in DaFeng WangGang experimental station. Journal of Nanjing Agricultural University, 1994, 17(4): 134-137.
- [8] Zhu A N, Zhang J B, Chen D L. The Field determination of soil saturated hydraulic conductivity. Soil Science, 2000, 32(4): 215-218.
- [9] Li B G, Hu K L, Chen D L, White R E. Conditional simulation of soil surface saturated hydraulic conductivity at field scale. Journal of Hydraulic Engineering, 2002, (2): 36-40.
- [10] Fang K, Chen X M, Zhang J B, Wang B R, Huang J, Gan Z F. Saturated hydraulic conductivity and its influential factors of typical farmland in red soil region. Journal of Irrigation and Drainage, 2008, 27(4): 67-69.
- [11] Na L, Zhang J J, Zhu J Z, Dong H B, Wang P, Yuan L L. Spatial heterogeneity of soil saturated hydraulic conductivity from different land use types on loess slope in west of Shanxi province. Research of Soil and Water Conservation, 2008, 15(3): 69-73.

- [12] Li X L, Chen X M, Zhou L C, Fang K. Soil saturated hydraulic conductivity and its influential factors in southwest karst region of China. Journal of Irrigation and Drainage, 2008, 27(5): 74-76.
- [13] Bai B, Chen X M, Qing S P. Saturated hydraulic conductivity of seashore saline soil in Yellow River Delta. Chinese Journal of Soil Science, 2005, 36(3): 321-323.
- [14] Moustafa M M. A geostatistical approach to optimize the determination of saturated hydraulic conductivity for large-scale subsurface drainage design in Egypt. Agricultural Water Management, 2000, 42; 291-312.
- [15] Jing Y S, Zhang B, Thimm A, Zepp H. Anisotropy of soil hydraulic properties along arable slopes. Pedosphere, 2008, 18(3): 353-362.
- [16] Liu C L, Shao M A. Spatial variation of saturated hydraulic conductivity and soil water of the surface layer of a slope on the Loess Plateau. Science of Soil and Water Conservation, 2009, 7(1), 13-18.
- [17] Hu W, Shao M A, Wang Q J, Fan J, Horton R. Temporal changes of soil hydraulic properties under different land uses. Geoderma, 2009, 149 (3/4): 355-366.
- [18] Herbst M, Diekkrügerb B, Vereeckena H. Geostatistical co-regionalization of soil hydraulic properties in a micro-scale catchment using terrain attributes. Geoderma, 2006, 132(1/2): 206-221.
- [19] Jiang T M, Liu H L, Liu H B, Xiao H J, Xia J H. Analysis on vertical variation characteristic of soil water in yellow soil sloping field. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(3): 6-11.
- [20] Liu C L, Shao M A. Soil hydraulic properties and their influences on soil water content under different land uses in Liudaogou watershed of Loess Plateau. Chinese Journal of Applied Ecology, 2008, 19(11): 2400-2407.
- [21] Zheng J Y, Shao M A, Li S Q, Zhang X C, Wen Y H. Variation of the hydraulic characteristics of soil profile in water wind erosion crisscross region. Transactions of the Chinese Society of Agricultural, 2005, 21(11): 64-66.
- [22] Wang Z Q. Geostatistics and Its Application in Ecology. Beijing: Science Press, 1999.
- [23] Zhou H Z, Gong Z T, Lamp L. Study on soil spatial variability. Acta Pedologica Sinica, 1996, 33(3): 232-241
- [24] Ma F Y, Li X R, Zhang J G, Li A X. Spatial heterogeneity of soil moisture in Shapotou sand-fixing artificial vegetation area. Chinese Journal of Applied Ecology, 2006, 17(5): 789-795.
- [25] Cambardella C A, Moorman T B, Novak J M, Parkin T B, Karlen D L, Turco R F, Konopka A E. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 1994, 58(5): 1501-1511.
- [26] Liu C L, Shao M A, Zhang X C, Li S Q. Study on soil moisture spatial variability of degraded slope in Shenmu Wind-Water Erosion Crisscross region. Journal of Soil and Water Conservation, 2005, 19(1): 132-135.
- [27] Hu W, Shao M A, Wang Q J. Study on spatial variability of soil moisture on the recultivated slope-land on the Loess Plateau. Advances in Water Science, 2006, 17(1): 74-81.

参考文献:

- [1] 连纲, 郭旭东, 傅伯杰, 虎陈霞. 黄土高原小流域土壤容重及水分空间变异特征. 生态学报, 2006, 26(3): 647-654.
- [7] 陈效民, 茆泽圣, 刘兆普, 徐中祥. 大丰王港试验站滨海盐渍土饱和导水率的初步研究. 南京农业大学学报, 1994, 17(4): 134-137.
- [8] 朱安宁,张佳宝,陈德立. 土壤饱和导水率的田间测定. 土壤, 2000, 32(4): 215-218.
- [9] 李保国, 胡克林, 陈德立, White R E. 农田土壤表层饱和导水率的条件模拟. 水利学报, 2002, (2): 36-40.
- [10] 方堃,陈效民,张佳宝,王伯仁,黄晶,甘再福. 红壤地区典型农田土壤饱和导水率及其影响因素研究. 灌溉排水学报,2008,27(4): 67-69.
- [11] 纳磊,张建军,朱金兆,董煌彪,王鹏,袁琳丽.晋西黄土区不同土地利用类型坡面土壤饱和导水率研究.水土保持研究,2008,15(3): 69-73.
- [12] 李孝良,陈效民,周炼川,方堃.西南喀斯特地区土壤饱和导水率及其影响因素研究.灌溉排水学报,2008,27(5):74-76.
- [13] 白冰, 陈效民, 秦淑平. 黄河三角洲滨海盐渍土饱和导水率的研究. 土壤通报, 2005, 36(3): 321-323.
- [16] 刘春利,邵明安.黄土高原坡地表层土壤饱和导水率和水分含量空间变异特征.中国水土保持科学,2009,7(1):13-18.
- [19] 蒋太明, 刘海隆, 刘洪斌, 肖厚军, 夏锦慧. 黄壤坡地土壤水分垂直变异特征分析. 农业工程学报, 2005, 21(3): 6-11.
- [20] 刘春利, 邵明安. 黄土高原六道沟流域不同土地利用方式下土壤水力特性及其对土壤水分的影响. 应用生态学报, 2008, 19(11): 2400-2407.
- [21] 郑纪勇,邵明安,李世清,张兴昌,温以华.水蚀风蚀交错带土壤剖面水力学性质变异.农业工程学报,2005,21(11):64-66.
- [22] 王政权. 地统计学及在生态学中的应用. 北京:科学出版社, 1999.
- [23] 周慧珍, 龚子同, Lamp L. 土壤空间变异性研究. 土壤学报, 1996, 33(3): 232-241.
- [24] 马风云,李新荣,张景光,李爱霞.沙坡头人工固沙植被土壤水分空间异质性.应用生态学报,2006,17(5):789-795.
- [26] 刘春利,邵明安,张兴昌,李世清. 神木水蚀风蚀交错带退耕坡地土壤水分空间变异性研究. 水土保持学报, 2005, 19(1): 132-135.
- [27] 胡伟, 邵明安, 王全九. 黄土高原退耕坡地土壤水分空间变异性研究. 水科学进展, 2006, 17(1): 74-81.

ACTA ECOLOGICA SINICA Vol. 32, No. 4 February, 2012 (Semimonthly) **CONTENTS**

The influence of a reclamation project on the macrobenthos of an East Nanhui tidal flat
Ecological health assessment of groundwater in the lower Liaohe River Plain using an ArcView-WOE technique SUN Caizbi YANG Lei (1016)
Nitrogen flows in intensive "crop-livestock" production systems typically for the peri-urban area of Beijing
The simulation of leaf net photosynthic rates in different radiation in apple canopy
Phenological variation of typical vegetation types in northern Tibet and its response to climate changes
Soil moisture and temperature characteristics of forest-grassland ecotone in middle Qilian Mountains and the responses to meteorological factors
Eco-hydrological effects of Qinghai spruce (<i>Picea crassifolia</i>) canopy and its influence factors in the Qilian Mountains
Response of tree-ring width of <i>Pinus sylvestris</i> var. <i>mongolica</i> to climate change in Hulunbuir sand land, China
Analysis of a dust case using lidar in Shanghai
Phenotypic traits of both larvae and juvenile Crasstrea hongkongensis and C. gigas
Inter-specific competition between <i>Prorocentrum donghaiense</i> and <i>Skeletonema costatum</i>
On the ecological amplitude of nitrate of <i>Alexandrium tamarense</i> at different initial phosphate concentrations in laboratory cultures
WEN Shiyong, SONG Lili, LONG Hua, et al (1133) Time lag effects and rainfall redistribution traits of the canopy of natural secondary <i>Pinus tabulaeformis</i> on precipitation in the
The vertical distribution of vegetation patterns and its relationship with environment factors at the northern slope of Ili River Valley: a bimodal distribution pattern
Comparative analysis of water related parameters and photosynthetic characteristics in the endagered plant <i>Tetraena mongolica</i> Maxim. and the closely related <i>Zygophyllum xanthoxylon</i> (Bunge) Maxim.
Antioxidant properties of four native grasses in Loess Plateau under drought stress
The effects of the addition of <i>Ceratobasidum stevensii</i> B6 and its growth on the soil microflora at a continuously cropped water- melon (<i>Citrullus lanatus</i>) site in China
Suitable habitat for the Achnatherum splendens community in typical steppe region of Inner Mongolia
Spatio-temporal variability of soil salinity and its relationship with the depth to groundwater in salinization irrigation district
Spatial heterogeneity of soil saturated hydraulic conductivity on a slope of the wind-water erosion crisscross region on the Loess Plateau LIU Chunli, HU Wei, JIA Hongfu, et al (1211) Spatial and temporal variations of total nitrogen density in agricultural soils of the Sanger Plain Maire Plat
The evaluation system of strength of winterness in wheat
A comparison of summer habitats selected by sympatric <i>Apodemus chevrieri</i> and <i>Apodemus draco</i> in Tiangjiahe Nature Reserve, China
Life tables for experimental populations of <i>Frankliniella occiaentalis</i> on 6 vegetable nost plants
Effect of diet switch on turnover rates of tissue nitrogen stable isotopes in fish based on the enrichment-dilution approach
Recognition of important ecological nodes based on ecological networks analysis: A case study of urban district of Nanjing
Seasonal characteristics of CO_2 have above than green space in the real layer behavior be
WU Yizhong, ZHU Qinyuan, LIU Ning, LU Genfa, DAI Mingzhoet al (1283)
Review and Monograph Recent advances in wetland degradation research
The diversity of the radio-resistant bacteria <i>Deinococcus radiodurans</i> TU Zhenli, FANG Lijing, WANG Jiagang (1318) Effect of pruning measure on physiology character and soil waters of <i>Caragana korshinskii</i>
······································

Scientific Note

《生态学报》2012年征订启事

《生态学报》是中国生态学学会主办的自然科学高级学术期刊,创刊于 1981 年。主要报道生态学研究原始创新性科研成果,特别欢迎能反映现代生态学发展方向的优秀综述性文章;研究简报;生态学新理论、新方法、新技术介绍;新书评介和学术、科研动态及开放实验室介绍等。

《生态学报》为半月刊,大16开本,280页,国内定价70元/册,全年定价1680元。

国内邮发代号:82-7 国外邮发代号:M670 标准刊号:ISSN 1000-0933 CN 11-2031/Q

全国各地邮局均可订阅,也可直接与编辑部联系购买。欢迎广大科技工作者、科研单位、高等院校、图书 馆等订阅。

XX

通讯地址: 100085 北京海淀区双清路 18 号 电

E-mail: shengtaixuebao@ rcees. ac. cn

编辑部主任	孔红梅
-------	-----

执行编辑 刘天星 段 靖

址: www.ecologica.cn

话: (010)62941099; 62843362

生态学报 (SHENGTAI XUEBAO) (半月刊 1981年3月创刊) 第32卷第4期 (2012年2月) ACTA ECOLOGICA SINICA (Semimonthly, Started in 1981)

Vol. 32 No. 4 2012

编辑	《生态学报》编辑部 地址:北京海淀区双清路18号 邮政编码:100085 电话:(010)62941099 www.ecologica.cn shengtaixuebao@rcees.ac.cn	Edited by	Editorial board of ACTA ECOLOGICA SINICA Add:18, Shuangqing Street, Haidian, Beijing 100085, China Tel:(010)62941099 www.ecologica.cn
主 编 主 管 主 办	冯宗炜 中国科学技术协会 中国生态学学会 中国科学院生态环境研究中心 地址:北京海淀区双清路18号 邮政编码:100085	Editor-in-chief Supervised by Sponsored by	FENG Zong-Wei China Association for Science and Technology Ecological Society of China Research Center for Eco-environmental Sciences, CAS Add: 18, Shuangqing Street, Haidian, Beijing 100085, China
出版	4 	Published by	Science Press Add:16 Donghuangchenggen North Street, Beijing 100717, China
印 刷 发 行	北京北林印刷厂	Printed by	Beijing Bei Lin Printing House, Beijing 100083, China
ेन क	地址:东黄城根北街 16 号 邮政编码:100717 电话:(010)64034563 E-mail:journal@cspg.net	Distributed by	Science Press Add:16 Donghuangchenggen North Street, Beijing 100717, China Tel:(010)64034563
¹⁰ 购 国外发行 广告经营	至四合地邮向 中国国际图书贸易总公司 地址:北京 399 信箱 邮政编码:100044	Domestic Foreign	E-mail:journal@cspg.net All Local Post Offices in China China International Book Trading Corporation
许可证	示海上尚厂字第 8013 号		Add P. O. Box 399 Beijing 100044, China

国外发行代号 M670

定价 70.00 元