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A Comparison of ecophysiological characteristics of four dominant Caragana

species in adaptation to Desert Habitat of the Inner Mongolia Plateau
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Abstract Caragana species grow mainly in the arid and semi-arid areas of Asia and Europe. Geographically the number
of species declines with increasing precipitation and temperature and increases with increasing altitude. They typically
grow in grasslands or deserts but are sometimes found in forests. The adaptation of these Caragana species to the climatic
conditions of the desert has made them become dominant plants in the desert. In desert regions there are high temperatures

strong solar radiation and very little precipitation. Among these environmental factors the growth and development of plants
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are most influenced by precipitation. What made these species become adaptive to the climate of a desert region To answer
this the eaophysiological characteristics of four dominant Caragana species — Caragana korshinskii C. stenophylla C.
ttbetica and C. roborovskyi which grow in the desert area of the Inner Mongolia Plateau were investigated. Leaf water
content the ratio of bound water to free water leaf water potential and water-use efficiency of C. roborovsky were lowest
among four Caragana species. The diurnal change of stomatal conductance of C. roborovskyi was different from that of the
other species and corresponded to the changes of daytime temperatures which were low on morning and afternoon high
during noon and presented a single peak curve. Diurnal changes of transpiration rate of four dominant Caragana species
were similar and they all reached their maximum at 10 00 am and then decreased gradually. The order for the daily
cumulative value of transpiration was as follows C. tibetica < C. roborovsky < C. korshinskii < C. stenophylla. Based on
adaptations to water conditions of arid environment C. korshinskii C. stenophylla and C. tibetica to maintained good water
status — leaf water deficit was lower than 15% . While the C. roborovsky’ s diurnal change range of leaf water deficit was
much wider its ability of keeping water was not as great as that of the other three Caragana species. Result from studies on
the osmotic adjustment indicated that C. roborovsky had the lowest osmotic potential and highest leaf cytoplasm ion
concentration. The lower the osmotic potential in the Caragana species the more contribution of inorganic ions were to the
total negative osmotic potential which hinted these negative osmotic potential came from accumulation of inorganic ions.
Results from studies on antioxidative enzyme systems and free radical content showed that activities of POD and SOD were
highest in C. roborovskyi among the four species while the activity of CAT kept similar between the four species. The order
of free radical content was as follows C. stenophylla > C. roborovskyi > C. korshinskii > C. tibetica. From these
eaophysiological characters we arrived at two main conclusions as follows 1 Adaptation strategy of C. roborovsky to
drought was different from that of the other three species. C. korshinskii C. tibetica and C. stenophylla were adaptable to
arid environment through a greater ability of preserving water to keep water status stable while C. roborovsky might rely on
its lower osmotic potential and higher leaf cytoplasm ion concentration to supplement excess water consumption. C.
roborovsky rely on greater ability of enduring variations in water conditions to adapt to its arid habitat too and its fairly high
activities of antioxidative enzymes might be one of the physiological bases for its stronger ability of endurance. 2 The low
water retaining ability of Caragana species adjusted their cytoplasm osmotic potential mainly through accumulating inorganic

ions and thereby maintained water balance. This is probably an energy-saving adaptation strategy.
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Table 1 Water state and water potential of leaves in the four dominant Caragana species in the desert 13 00

/

Species Water content % Bound water/ Free water Water potential MPa

C. korshinski 51.88¢ 1.13b -1.59b

C. stenophylla 54.77b 1.58a ~1.85a

C. tibetica 48.08d 1.17b -1.51b

C. roborovoskyi 49.34d 0.92¢ -1.85a
In columns different letters indicate significant differences in Duncans multiple range test o =0.05

2.2 4
4 10 00 la
< < < 2
1b
< < <
2

http //www. ecologica. cn



4646 27

—— C. korshinskii —a— C. stenophylla —#&— C. tibetica —— C. roborovskyi

. 350
a b
~ 300
1o A
o £ 8 2501
o O n
eg 8 23
5E 3 200 -
ES 6| 25
oy Eg 150
ME 4| g
= o S 100
& 4([]
® =
2 - r 50
() 1 1 1 1 | J O | | 1 | | |
08:00 10:00 12:00 14:00 16:00 18:00 08:00 10:00 12:00 14:00 16:00 18:00
it i) Time i ) Time

1 4

Fig. 1 Diurnal changes of transpiration rate and stomatal conductance of the four dominant Caragana species in the desert
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Table 2 Daily cumulative values of transpiration stomatal conductance and water use efficiency of the four dominant Caragana species in

the desert
Soeci Daily cumulative values Stomatal conductance Water use efficiency
pecies of transpiration mol H,0 m 2 mmolH, 0 m % s~! mmolCO, mol ~'H,0
C. korshinskii 240.29b 181.71b 2.22b
C. stenophylla 246.46b 153.79¢ 2.10b
C. tibetica 194.62¢ 124.81d 2.46a
C. roborovoskyi 206.92¢ 156.12¢ 1.58¢
In columns different letters indicate significant differences in Duncans multiple range test « =0.05
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3 4

Table 3 Osmotic potential of the main osmotic adjustment substances of the four dominant Caragana species in the desert

Shecies Organic osmotic adjustment Inorganic osmotic adjustment Total Osmotic
pecies substances MPa substances MPa potential MPa
C. korshinskii —-0.9282 44.88% -1.1402 55.12% -0.2068¢
C. stenophylla —-0.9530 50.78% -0.9239 49.22% -0.1877d
C. tibetica —-0.9659 40.11% —-1.4421 59.89% -0.2407b
C. roborovoskyt -0.9107 33.21% -1.8316 66.79% —-0.2742a
In columns different letters indicate significant differences in Duncan’s multiple range test o =0.05
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Fig. 3 Antioxidative enzymes and free radical content of the four dominant Caragana species in the desert
1 C. korshinskit 2 C. stenophylla 3 C. tibetic 4 C. roborovoskyi

Different letters indicate significant differences in Duncans multiple range test o =0.05
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