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Abstract Many if not most trees contain greenish photosynthetically active chlorenchyma tissue below the outer

periderm or rhytidome of branches and even stems. However not so many people have realized their ecological significance
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and photosynthetic function. Here by reviewing previous studies and our own research work some general conclusions
were got as following

1 Branch stem photosynthesis difference between dark respiration rate and respiration at saturation light regime
was 0 ~10wmol m >s™"  while most of the data were ranged from 0.5 pwmol m *s 'to 3.0 wmol m *s™'. Although net
photosynthetic uptake of CO, is rarely found stem internal re-fixation of CO, in young branches and stems may compensate
for the potential respiratory carbon loss. Over 80% of the referenced data shows that this photosynthetic uptake could refix
40% ~100% of the respiratory CO, loss. However a few studies have scaled up from instantaneous studies to tree or forest
level.

2 Not only the photosynthetic carbon-fixation itself but also photosynthates from canopy leaves strongly affect the
respiratory CO, loss from non-photosynthetic organs. However there are still discrepant opinions on the functional
difference of newly-formed photosynthates and stored photosynthates.

3 Chlorophyll content in barks is generally 80 ~450 mg m > which is lower than those in corresponding leaves 340
—620mg m > . Moreover the ratio between chlorophyll a and chlorophyll b chl. a/b for barks is 2.5 in average which
is significantly lower than that of leaves 3.6 in average p <0.0001  indicating shade-environmental acclimation of
barks.

4 Traditional view on the function of carotenoids for non-photosynthetic organs is its low light acclimation since the
total content at bases of area and dry mass in barks are much lower than that in leaves. However recent studies have shown
that total carotenoids and its componential compounds at a base of chlorophyll fresh mass are much higher than that
corresponding leaves. This has proved to be related to the acidified chloroplast stroma by extremely high CO, concentration
in barks. It is suggested that high internal CO, concentrations in barks impede photosynthesis possibly through acidification
of protoplasm and impairment of the pH-dependent high energy state quenching followed by reduction in the efficiency of
heat dissipation.

5 Optics for the barks of stems and branches are characterized as that most of light being absorbed and only part of
light being reflected and transmitted. About 70% of the data show that transmission is ranged from 5% to 15%  while over
85% show that the transmission is ranged from 0% to 20% . Moreover vessels fibres both xylem and phloem fibres and
tracheids in woody plants can also conduct light efficiently along the axial direction via their lumina vessels or cell walls

fibres and tracheids . Only the spectral region of far-red and near infra-red light is efficiently conducted and transmitted
in branches and stems.

6  Although some study on herbal plants showing a C4 feature many other species particularly woody branches and
stems is unknown. The influences of special microenvironment extremely high CO, concentration increased red to blue

photon ratio and hypoxia on the photosynthetic machinery need further studies.
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a’/b

Table 1 Differences in Chlorophyll a + b and Chl. a/b between leaf and stems/branches

a+b Chl.a+b mgm72 a/b Chl. a/b
Species / / Note
Branch Leaf branch/leaf Branch Leaf branch/leaf
Eucal ) 2 478 ~673 347 95 1.65 4.0 - - branch
ucalyptus nitens
N 20a
Ioatica 16 180 ~225 360 ~ 540 0.45 2.5~3.0 3.5~4.0 0.73 Current branch
Fagus sylvatica 204 tree
5
Fawus svivatica 7 131 ~ 158 361 ~431 0.36 2.44 ~3.41 4.19 ~4.8 0.65 branch of
agus sylvatica 5a tree
4
Povulus ¢ o 17 232 ~425 621 ~438 0.62 2.38 ~2.47 3.9~3.49 0.66 branch of
opulus tremula 4a tree
219 425 2.8 2.5 4
458 61 0.35-0.93 ’ ’ 3.5 3.9 0.74 stem of 4
Populus tremula *7 160 180 2.6 3.0 stem of #a
tree
Povulus deloides 2 55.1 12.4 340.7 8.4 0.16 1.70 3.47 0.49 Branches
opulus deltoides
Arbut do 2 52.0 6.7 502.2 78.9 0.10 1.42 2.76 0.52 Branches
rbutus unedo
Pistacia lenti " 78.7 9.1 505.0 10.5 0.16 1.78 2.94 0.61 Branches
istacia lentiscus
P 0 58.6 8.2 418.3 33.2 0.14 1.94 3.36 0.58 Branches
runus cerasus
Quercus
ora © 188.7 12.9 554.0 22.4 0.21 2.07 3.01 0.69 Branches
coccifera
M 230.5a 452.0b 0.5 2.5a 3.6b 0.6
ean
* wmol m 2 0.90 mg wmol 7! mg m 2
Wittmann
a Tausz
20 2
2
Levizou
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Table 2 Differences in carotenes and its components between stems

46

2

branches and leaves

V+A+7 Xanthophyll

http //www. ecologica. cn

Ne hi - -c ne Lutei
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