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Abstract Calanus sinicus is regarded as one of the key secondary producers linking phytoplankton and higher trophic
levels in the China-GLOBEC Project. The density and sinking rate of Calanus sinicus eggs were studied in order to
understand the depositional dynamics of eggs. The egg density of C. sinicus was determined by the density-gradient
centrifugation with sucrose solution. The mean density of C. sinicus eggs was 1.0733 g cm ™ with a SD of 0.0087 g cm ~°
in Xiamen Bay from December 2002 to May 2003. Based on Stokes’ Law the values of sinking rate for Calanus sinicus eggs
were estimated ranging from 43.9 to 67.5 m d~'. The comparison of the egg deposition time and egg hatching time
suggested that in most cases virtually all eggs of C. sinicus would settle to the bottom before their hatching in Xiamen Bay
even though the eggs have high potential to hatch. The ecological significance of fast settlement of C. sinicus eggs was

discussed.
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1 Introduction
The calanoid copepod Calanus sinicus Brodsky is distributed over the shelf waters of the South China Sea the
East China the Yellow Sea the Bohai Sea the Inland Sea of Japan and the adjacent Pacific Ocean '~ . The

3 68

species is one of the most important macrozooplankters in those areas in terms of biomass and supports the

production of commercially important anchovy sand eels and sardines * . Hence this species is regarded as one of

the key secondary producers linking phytoplankton and higher trophic levels in the China-GLOBEC GLOBal
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ocean Ecosystems dynamics .
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development
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Although some biological attributes of C. sinicus such as feeding "™ fecundity

19-21 .
seasonal life

respiration '®  diet vertical migration spatio-temporal distribution *  life history strategy
cycle 7 fertilization *  and metal assimilation > ** have been studied for years little has been done to determine
the density and sinking rate of C. sinicus eggs. The gathering of information regarding the density and sinking
velocity of C. sinicus eggs would help to understand the depositional dynamics of eggs.

2 Materials and methods

The study site 118 02.363'E 24 26.778'N  was located approximately in the center of Xiamen Bay China.
The water depth is 10. 8 m. Samples were collected at two week intervals from December 2002 to May 2003. Water
temperatures were measured with a thermometer and salinities with a hand refractometer. Chlorophyll a
concentrations were measured with the fluorometric method * .

To measure the density of C. sinicus eggs adult females were transferred into two egg incubation systems filled
with sea water filtered through a Spm sieve. The incubation systems were self-made according to the design by
Burkart and Kleppel ** and the volume was enlarged so that enough eggs would be available. Animals were offered a
mixed diet 1:1 of Isochrysis galbana and Phaeodactylum tricornutum. The concentration of the mixed diet was
approximately 1.2 x 107 cell m . Egg density was determined with a density-gradient centrifugation method with
sucrose solution. The density-gradient centrifugation method has been commonly used to measure the density of

729 Densities of the gradient were calculated as mass divided by volume mass was determined with

copepods eggs
an electronic scale accuracy 0.0001g . Five different densities 1.03 —1.15 ecm ™  were used according to our
primary study. Solutions of the gradient were carefully transferred into 15 ml centrifuge tubes 4 replicates to make
up five layers of increasing density from top to bottom. Thirty to forty freshly spawned eggs were transferred onto the
surface of the density gradient with a micropipette. A small amount of sea water was inevitably added to the gradient
but it never exceeded 1 ml. The tubes were centrifuged at 3000 r/min. for 30 min. After centrifugation each layer
was carefully pipetted out from top to bottom. Eggs settled in a particular layer were assumed to have equal density
as that layer. All density measurements were made at room temperature 20°C  and we did not control the osmotic
potential of the density gradient since the change was very small a <1% change in egg density for a 100% change
in ambient osmotic potential **

779 The Stokes’ law is expressed as 1

Egg sinking rates were calculated with Stokes’ law
V.=2/97g p, -p, /m 1

Where Vs the sinking rate r the radius of the eggs pv, the density of the eggs p, the density of seawater 7 the

kinematic viscosity of seawater. Seawater density and kinematic viscosity for Stokes’ law were estimated from water

temperatures and salinity ' . One hundred and ninty eggs of C. sinicus used to measure the egg diameter were

collected on 12 April 23 April and 2 May 2003. The diameter was determined with a microscope at 160 using an

ocular micrometer. The mean diameter was used in Stokes’ law.

To investigate the hatching time of eggs freshly spawned eggs of C. sinicus were collected. Each egg was
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placed in a well of a 24-well tissue culture plate filled with filtered water. Experiments were carried out at 10 14
18 22°C and 26°C. At least 50 eggs were used at each temperature. The hatching time of eggs was taken as the
point at which 50% of the final number of hatchings was observed * .

3 Result

O 2

The highest temperature was 29.3°C in May and the g 22 *\\\%//
lowest temperature was 14.0°C in February in Xiamen Bay g 12 i
during the study period. Salinity also fluctuated seasonally. Tt S 10 Dec‘ I Janl ‘Feb‘ ‘Marl I Apr‘ IMayI I
was lower and more variable in the spring-summer because of g ;; [
heavy rainfall. The highest chlorophyll a concentration was z 2 f‘—‘*"/’/’_‘_*/\//\
9.1 mg m~ in March Fig. 1 . ;Eizk L

The density of Calanus sinicus eggs was measured _ Pee. dan Sl
every two weeks from December 2002 to May 2003. The sn Ig :W
mean density of eggs was 1. 0733 g cm™ with a SD of § g:
0.0087 g cm . Two peaks respectively occurred in late S "%« Tm e MIMaYI» IADF% IM&WJ I
December and early April Fig. 2 . o

The frequency distribution of the densities of 2301 Fig. 1 Environmental variables during the study period

eggs throughout the study period was shown in Fig. 3.

3

Most of eggs were distributed at a density of 1.06 g em ™"  although eggs at all densities.

The measurement of 190 eggs showed that the mean

1.12
diameter of C. sinicus eggs was 160.5 pm with a SD of ~ ol
8.2 pwm. The sinking rate of C. sinicus eggs in Xiamen §9108 i
Bay from December to May was illustrated in Fig. 4. The g '
values of sinking rate ranged from 43.9 to 67.5 m d'. g 106
The highest sinking rate occurred in early April - while the 1o Decf ‘Jan.l IFebA‘ ‘May.‘ ‘Aprf ‘May‘

. Month
lowest value was observed in late January. The mean on

Slnk]ng rate for C. sinicus eges n Xiamen Bay was 52.9 m Fig. 2 Density of Calanus sinicus eggs in Xiamen Bay from December

d”' withaSDof7.5md™". to May

Time to 50% hatching versus temperature for Calanus
sinicus eggs was shown in Fig. 5. A power function y=741.52x"""" R*>=0.9817 fitted to the data showed a
strong relationship.

We calculated the settling time from the surface to the bottom at the study area 10.8 m  and how it compared
with the time required for hatching Fig. 6 . The hatching time was calculated from the power function derived from
the Fig. 5. The egg hatching time EHT was long in winter when seawater temperature was low and decreased
gradually with the increase of temperature. The egg deposition time EDT ranged from 4.0 to 5.9 h during the
study period. In all cases EHT was higher than EDT which means that eggs of C. sinicus would settle to the bottom
before their hatching especially when the temperature was low.

4 Discussion

Most marine calanoids spawn their eggs directly into the water column. Since the eggs are denser than seawater

they sink so that in shallow waters many would reach the bottom prior to hatching 7 ** **** | Although the idea of

27 28 33

the sinking of eggs to the bottom prior to hatching in shallow area has been proposed by many authors little

has been done to compare egg depositing time and egg hatching time directly except a recent research * . This
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comparison of the egg deposition time and egg hatching time suggests that in most cases virtually eggs of C. sinicus
would settle to the bottom before their hatching in Xiamen Bay even though the eggs have high potential to hatch
which confirms the above idea. The potential for deposition of copepod eggs onto the seabed may be influenced by
the depth at which spawning occurs in the water column ** . Zhang et al. * reported that Calanus sinicus migrated
into surface waters and spawned eggs at night. Thus spawning eggs at the surface may maximize the possibility that
eggs will hatch before being deposited into bottom sediments.
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Calanus sinicus in Xiamen Bay

The apparent egg mortality rate in marine copepods is usually calculated as the difference between the egg
production rate measured by bottle incubations and the egg production rate estimated in situ > ° . Thus the
apparent egg mortality rate is indeed how fast the eggs are removed from the water column * . Since copepod eggs
usually have higher density than sea water egg sinking has also been suggested as a major mechanism to remove eggs

27 3
from the water column

. Zhang et al. ¥ reported that the mortality of C. sinicus eggs was very high 80% in
June in the Yellow Sea and they suggested that the predation of larva and juvenile of Engraulis japanicus was the
main reason of the high mortality for C. sinicus eggs. However the larva and juvenile of E. japanicus are distributed
in the upper 10 m in most time of the day except at noon when they sink to 20 m ** . Considering their sinking rate

C. sinicus eggs would escape from the 0 — 10 m layer within 5 h  where larva and juvenile of E. japanicus distribute.
Thus the loss of eggs due to predation may be limited. The sinking of eggs to the bottom prior to hatching may be one
of major mechanisms that result in high mortality. Egg sinking rates in the Yellow Sea were calculated with Stokes’
law. The mean density of eggs 1.0733 gem ™ and diameter 160.5 wm obtained from present study were used.

9

The seawater and salinity are mean values of published data * . The comparisons of the egg deposition time and egg

hatching time for C. sinicus in Yellow Sea were shown in Fig. 7. The average water depth of the Yellow Sea is 44 m
¥ . Hence C. sinicus egg would sink out of the water column before hatching occurred contributing to the

apparent egg mortality in the water column. Zhang * observed that the mortality of C. sinicus egg in Station A 35
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was higher than that in Station B 55m . Our hypothesis high mortality of eggs due to the sinking to the bottom
prior to hatching can explain the above observation. Since the depth of Station A is lower than that of Station B the
percentage of C. sinicus eggs that settle to the bottom before hatching in Station A would be higher than that in
Station B leading to the apparent high mortality of eggs in Station A. The hydrographic and circulation properties of
the Yellow Sea are controlled by the Kuroshio Current KUC  Taiwan Warm Current TWC  and surface wind
stress. The bottom friction layer draws KUC water across the bottom of the continental shelf into the Yangtze Relict
River valley and generates upwelling along the Chinese coast * . The distribution and abundance of plankton are
controlled by the physical procession. Wei *' showed that the jet along the front and upwelling in the mixed side of
the front play an important role in the transport of anchovy eggs in the Yellow Sea. Upwelling drags the sinking of C.
sinicus eggs while downwelling significant accelerate the sinking. Unfortunately it is still impossible to predict the
effect of upwelling/downwelling on the sinking of C. sinicus eggs in the Yellow Sea due to very limited knowledge on
the vertical movement.

The significance of fast settlement of copepod eggs is that the post-settlement fate of the eggs instead of water
column processes will determine the true egg mortality * . If settled eggs can maintain survive in the sediment and
return to the water column due to physical and biological suspension these eggs will create a potentially important
source for recruitment of nauplii into the plankton and the apparent egg mortality will overestimate the true egg
mortality. Uye > found that the most of C. sinicus eggs in the mud would die and some eggs on the mud could
remain viable for 2 days which means that most settled eggs would die in the field due to their weak capability of
survival. Many factors would affect the density and sinking of copepod eggs. Both salinity and temperature
significantly affected the density and sinking velocity of the eggs of Arartia tonsa ** . Many researches indicated that

* . Different hatching success of

food concentration and quality affect the egg production rate and hatching success *
copepod eggs may indicate the different biochemical contents. So food concentration and quality may affect the
density and sinking rate of copepod eggs. However there is no the study on this topic. The possible reason is the
technical difficulty due to the small size of eggs. Miller and Marcus ** showed that there was no significant difference
of A. tonsa eggs. In C. sinicus a multiple-layered fertilization envelope was formed after spawning and the surface of
the egg was extremely electron dense ¥ . The possible effect of the surface structure of C. sinicus on the sinking rate
is still unknown.

It is must be acknowledged that the egg sinking rates presented here are the theoretical rates for a laminar fluid

environment . Turbulence and water currents may influence the deposition of eggs in the water column. The actual

sinking rate of eggs W, in the natural environment can be expressed as 2

s
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W =Ww+W 2
where W is the mean sinking rate values calculated from Stokes’ law and W' is the sinking rate associated with
vertical turbulent motion in the fluid. The magnitude of W' may be estimated as 3

W =K/7' 3
where K is the vertical eddy diffusion coefficient and Z' is the characteristic vertical length scale for the turbulent

45 %

eddies L * * . Xiamen Bay is a tidally driven estuary and the water is well mixe In such a condition

equation 3 could be further simplified. The vertical eddy diffusion coefficient K, could be caculated as 4

K. =2.5x1072zv 4
where Z is the depth of the water column and V is the mean flow velocity in the water column. Z’' may be
approximated as 0.4Z. W’ could be simplified into 5 * *

W =6.25x107V 5
The average flow velocity in Xiamen Bay ranges from 0.1 to 0.6 m s™' * * | Thus the magnitude of W' is
estimated approximately as 54 ~324 m d ', Compared to the mean sinking rate W of C. sinicus the value of W’
is quite considerable. If the net direction of W' is down the vertical turbulent motion would significantly accelerate
the egg deposition. On the contrary the vertical turbulent motion may make eggs keep suspension due to their up-
action.

Resuspension is a common physical process that occurs everywhere in the marine environment especially in
shallow areas. Resuspension can be caused by vertical events such as strong wind tidal currents and biological
activities. Resuspension would be expected if the bottom shear velocity scaled to or was larger than the sinking
rate W, . In estuaries the bottom shear velocity may be estimated as 6 * ¥

U" =0.0447V 6

The magnitude of U” in Xiamen Bay ranged 386 to 2317 m d~'. Thus eggs of C. sinicus are likely to be

resuspended from the bottom in Xiamen Bay. The gathering of information regarding the density and sinking rate is a

crucial first step to gain an understanding of depositional dynamics for egg in the field and will improve our insight

of the population dynamics of Calanus sinicus.
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