Vol. 27 "No. 3 Mar. 2007

# 双氢胺对土壤裂缝产生过程中N,O释放的影响

# 黄树辉<sup>12</sup>,曾光辉<sup>3</sup>,吕 军<sup>2</sup>

(1. 温州医学院公共卫生学院环境科学系 浙江 温州 325035; 2. 浙江大学环境与资源学院,浙江杭州 310029; 3. 温州农科院,浙江 温州 325006)

摘要 模拟稻田土壤在加入不同量的( $NH_4$ ) $_2SO_4$ 和双氢按(DCD)抑制剂的溶液后先进行淹水培养,然后让土壤自然蒸发变干,直至土壤产生裂缝到裂缝稳定 最后在裂缝稳定后的复水的连续培养试验。通过模拟对土壤进行复杂的、动态的水分含量变化过程中试验 探讨双氢胺抑制剂对其  $N_2O$  释放的影响。每天监测土体释放的  $N_2O$  通量,以及渗漏液中溶解的  $N_2O$  浓度和 pH 值。这些监测结果表明:在相同的水分管理条件下,土壤中没有氮肥加入,只有 DCD 加入的 A 处理释放  $N_2O$  气体最少,其平均释放通量为  $340.91~\mu g~m^{-2}~h^{-1}$ ;土壤中有高剂量的氮肥和 DCD 加入的 E 处理释放  $N_2O$  最多,其平均释放通量为  $9280.23~\mu g~m^{-2}~h^{-1}$ 。 裂缝产生稳定后的复水能减少  $N_2O$  向空气中的释放。渗漏液中的  $N_2O$  浓度都是过饱和的。当土壤中肥料  $(NH_4)_2SO_4$ 加入量(每千克土壤中外加  $N \leq 3g$ )相对较少的情况下,DCD 抑制剂能抑制裂缝产生过程中的  $N_2O$  释放;当土壤中肥料  $(NH_4)_2SO_4$ 加入量(每千克土壤中外加  $N \geq 6g$ )相对较多的情况下,DCD 抑制剂能抑制裂缝产生过程中的  $N_2O$  释放效果不明显。此外还得出( $NH_4)_2SO_4$ 和 DCD 的加入量比是 E 10:1 时,其抑制 E 20 排放的效果比(E 30 排放的效果比(E 40 升 E 50 升 E 60 升 E 60 升 E 61 升 E 61 升 E 62 平方工程

关键词 裂缝;双氢胺;NoO释放;渗漏液

文章编号:1000-0933 (2007)03-1248-06 中图分类号:X511 文献标识码:A

# Effects of adding DCD on N2O emissions in soil cracking

HUANG Shu-Hui<sup>1 2</sup> , ZENG Guang-Hui<sup>3</sup> , LÜ Jun<sup>2</sup>

- 1 School of Public Health , Wenzhou Medical College , Wenzhou 325035 , China
- 2 College of Nature Resource and Environmental Science , Zhejiang University , Hangzhou 310029 , China
- 3 Wenzhou Academy of Agriculture Science , Wenzhou 325006 , China

Acta Ecologica Sinica 2007 27 (3 ) 1248 ~ 1253.

**Abstract**: There is a flush of nitrous oxide  $(N_2O)$  emissions during cracking of clay paddy soils. The goal of the study was to control the high  $N_2O$  emissions by adding nitrification inhibitor dicyandiamide (DCD) during the development of cracks. The specific objective of this study was to investigate whether DCD could inhabit  $N_2O$  emissions during soil cracking and reirrigation. Soil columns incubation experiments were conducted by adding 5000 ml solution containing different amounts of  $(NH_4)_2SO_4$  and DCD to paddy soils. Thereafter , the soil columns were dried at 30-32% in a greenhouse for 10 days. After the  $10^{th}$  day , the columns were re-irrigated with 5000 ml distilled water and left to dry again at 30-32% in the greenhouse.

基金项目 国家 '973 "资助项目 (2002CB410807) 温州医学院博士科研启动基金资助项目 (QTJ05003)

收稿日期 2006-01-04;修订日期 2006-07-08

作者简介 黄树辉 (1977~),女,湖南长沙人,博士,讲师,主要从事污水治理、温室气体释放和氮循环研究. E-mail; hshuhui@ 126.com

Foundation item: The project was financially supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No. 2002 CB410807) and Research Foundation of Wenzhou Medical College (No. QTJ05003)

**Received date** 2006-01-04 ; **Accepted date** 2006-07-08

Biography :HUANG Shu-Hui , Ph. D. , Assistant professor , mainly engaged in wastewater treatment , nitrogen recycling and greenhouse gases emissions.

The dynamic changes of daily N<sub>2</sub>O emissions flux and the concentration of dissolved N<sub>2</sub>O and pH of leaching solution showed that the treatment with DCD addition and without nitrogen fertilizers (A treatment ) had the lowest  $N_2O$  emissions , the mean emissions flux was 340.91 µg m<sup>-2</sup> h<sup>-1</sup>. However, the treatment with high amount of DCD and nitrogen fertilizers addition (E treatment ) had the highest emissions , the mean emissions flux was 9280.23  $\mu g$  m<sup>-2</sup> h<sup>-1</sup>. The results showed that after the crack development attained maxima, the re-irrigation inhibited the N2O emissions. The dissolved N2O was over-saturated in leaching solution. Moreover, the results indicated that DCD could inhibit the N2O emissions when low amount of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> was added , but DCD could not inhibit N<sub>2</sub>O emissions efficiently when high amount of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> was added even though the ratio of (NH<sub>4</sub>), SO<sub>4</sub> and DCD was the same (10:1). The inhibition of N<sub>2</sub>O emissions by DCD was more efficient when the ratio of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> and DCD was 10:1 than their ratio was 10:1.5 and 10:2. There was no significant correlation between N2O emissions flux and dissolved N2O in leaching solution. Similarly , no correlation was obtained between N<sub>2</sub>O emissions flux and pH of leaching solution either. While a positive significant ( $\rho < 0.05$ ) linear correlation existed between dissolved N2O and pH of leaching solution , in general , the addition of DCD could inhibit N2O emissions under continuous and dynamic variance of water regimes during the incubation. The most efficient inhibition of the role of DCD as a N<sub>2</sub>O emission inhibitor was the added amount of commercial nitrogen fertilizer and the content of ammonium-nitrogen (NH<sub>4</sub>-N ) in soils. Considering to reduce the N<sub>2</sub>O emissions , re-irrigation is one of the ways that can be used to control N2O emissions after cracks were produced in paddy soils.

Key Words: crack; DCD; N2O emissions; leaching solution

 $N_2O$  是近年来全球变暖备受关注的温室气体之一,据估计它的全球增温潜势值为 310 (CH<sub>4</sub>为 21 ,CO<sub>2</sub>为 1 )<sup>[1,2]</sup>。此外  $N_2O$  在大气中具有较长的滞留时间,并参与大气中许多光化学反应 表现为在平流层中通过  $NO_x$ 把  $O_3$ 转化为  $O_2$  ,形成 NO 和  $N_2$  ,破坏臭氧层 [P,A]。研究报告得出,全球  $N_2O$  浓度值在不断增高,影响到全球气候的变化和由此产生一系列的环境问题。

在粘性水稻土干湿交替过程中,由于物理或生物过程和作用,会使水稻土产生大孔隙,有时甚至出现裂缝 $^{\circ}$ 1。稻田大孔隙和裂缝的出现,会导致优先水流和溶质优先迁移的发生。溶质的优先迁移会导致作物不能充分吸收这些溶质,溶质大量淋失。而  $NO_3^-$ , $NO_2^-$ , $NH_4^+$ 等氮溶质进入地下水体可能污染饮用水,且产生一系列的环境问题 $^{\circ}$ 7<sup>1</sup>。裂缝的出现,也会影响土壤中的气体释放。一些研究表明在稻田土壤裂缝产生过程中  $N_2O$  有一个大的释放高峰 $^{\circ}$ 1。目前,研究者只是对于裂缝条件下  $N_2O$  释放高峰的现象进行了一些探讨,但是对于如何减少和抑制  $N_2O$  排放的报道却很少。

基于  $N_2O$  的浓度增加 将产生的一系列全球环境问题 放研究在裂缝产生的条件下如何抑制  $N_2O$  的排放 是很有意义的。DCD 是一种高效的硝化抑制剂 ,但是在裂缝存在的条件下能否高效地抑制  $N_2O$  排放 ,目前我们仍旧不清楚。因此,研究 DCD 的加入对裂缝产生过程中  $N_2O$  释放的影响,对于了解稻田  $N_2O$  的释放机理 和减少温室气体的释放都是很重要的。本试验选取有代表性的水稻土进行淹水,自然变干,产生裂缝,裂缝稳定,复水和自然变干的水分管理,并且加入 DCD 和铵盐( $(NH_4)_2SO_4$ 的培养试验,初步研究在裂缝出现的条件下减少  $N_2O$  排放的方法,旨在为减缓全球气温升高提供科学依据。

# 1 材料与方法

#### 1.1 供试材料

供试土壤采自嘉兴双桥农场脱潜潴育型水稻土青紫泥,土壤的基本性质如下 :土样的 pH 值为 6.89  $(H_2O:soil=2.5:1)$ ,有机质为 2.71%,全氮、总磷分别是 2.75g/kg 土和 0.47g/kg 土。土壤质地为砂质黏壤土,黏粒含量为 32.25%。田间最大持水量为 53.43% [7]。

供试土柱为 PVC 材料 ,土柱的高度为 95cm ,直径 30cm ,底部有排水口。

### 1.2 土壤产生裂缝的 DCD 土柱实验

选取水稻田青紫泥表层  $0 \sim 30 \,\mathrm{cm}$  鲜土样 ,风干磨细 ,过筛 ,装入土柱中 ,在温室中培养 ,培养期间温度为  $30\,^{\circ}$  。先在土柱底部装入过筛 ,洗净 ,烘干的石英砂  $10 \,\mathrm{cm}$  高 ,然后装土  $80 \,\mathrm{cm}$  高。装完土后浸水 2 周 2 周后在底部排水口排干水。

淹水 2 周后,将土柱洗净,排干水。CK 土柱中只加入 5000ml 水,A、B、C、D 和 E 土柱里分别加入 5g DCD、100g (NH<sub>4</sub>)<sub>2</sub> SO<sub>4</sub>和 10g DCD、100g (NH<sub>4</sub>)<sub>2</sub> SO<sub>4</sub>和 15g DCD、100g (NH<sub>4</sub>)<sub>2</sub> SO<sub>4</sub>和 20g DCD 的 5000ml 溶液,每种处理各重复 3 次。

对以上 6 种不同施肥量和不同 DCD 剂量的抑制实验理进行一系列的处理 ,首先让土壤自然变干,然后直至产生裂缝到裂缝稳定,大约在第 10 天后再给土柱复水约 5000 ml。各处理实验同时开始,加入试剂前 1d 定为培养的第 1 天,整个实验过程为 16d。 100g ( $NH_4$ ),  $SO_4$ 加入到土柱中相当于每千克土中含氮 3g。

在培养的第2天 土柱表面水深1cm 第4天开始出现裂缝 在第7天裂缝已经发展稳定。

### 1.3 监测指标及方法

用密封法每天收集  $N_2O$  气体 ,  $N_2O$  气体监测用 GC-ECD。并在土柱底部排水口收集渗漏液 ,监测渗漏液 的  $N_2O$  浓度和 pH 值。溶解的  $N_2O$  浓度也使用 GC-ECD 监测 ,其原理和计算是依据 Fick 第一定律 ,其具体的监测方法见文献  $^{[3,8]}$ 。

# 2 结果与分析

### 2.1 土柱中释放的 N<sub>2</sub>O 通量变化

前 16d 的土壤中  $N_2O$  释放的连续监测结果见图 1 和图 2 图 1 和图 2 表明了 6 种处理的土壤释放  $N_2O$  通量的动态变化。从图中可以得出 E 处理中的  $N_2O$  释放通量明显高于其它 5 种处理。从图中可以得出各处理的  $N_2O$  释放通量高低 E 处理最高 ,其次 E 和 E 处理最高,其次 E 和 E 处理最高,其次 E 和 E 处理最高,其次 E 和 E 处理。计算得出 E E 处理。其次 E 和 E 这 E 种处理的土壤向大气中释放的 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 过 E 和 E 和 E 过 E 和 E 和 E 和 E 和 E 和 E 和 E 如 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E 和 E E 和 E 和 E 和 E 和 E 和 E E 和 E E 和 E E 和 E E 和 E E E 和 E E E E 和 E E E E E E E

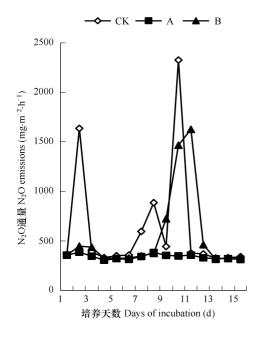



图 1 CK、A 和 B 处理土壤释放的  $N_2$ O 通量变化

Fig. 1 The dynamic variation of  $\mathrm{N}_2\mathrm{O}$  emissions flux among CK , A and B treatment

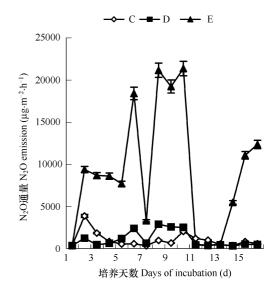



图 2 C、D 和 E 处理土壤释放的 N<sub>2</sub>O 通量变化

Fig. 2 The dynamic variation of  $\mathrm{N}_2\,\mathrm{O}$  emissions flux among C , D and E treatment

# 2.2 影响土壤中 N,O 释放的主要因素

# 2.2.1 氮肥和 DCD 抑制剂对 N,O 释放的影响

A 处理在培养过程中的  $N_2O$  释放通量基本没有发生变化 ,且平均通量在释放过程中是各种处理中最低的。A 处理释放的  $N_2O$  通量与 CK 处理相比最小的原因是 :尽管土壤中没有加入外源铵态氮 ,但是土壤中还是有一定量的氮素存在 这些氮元素通过硝化反硝化反应而产生  $N_2O$  并释放出来。而 DCD 是可以抑制一部分硝化反应 ,因而也抑制土壤中硝化作用产生的  $N_2O$  释放。CK 和 B 处理的  $N_2O$  释放通量变化规律相似 ,且排放通量基本差不多 ,这说明 DCD 抑制了外源氮肥加入当量氮的  $N_2O$  的释放。因此 ,与 CK 处理相比 ,B 处理中  $N_2O$  的释放也起到了抑制效果。但是尽管 C 和 D 处理的 DCD 抑制剂加入量比 B 处理多 ,但是在这过程 ,他们土壤中释放的  $N_2O$  释放通量却比 B 处理还要大 ,这说明高比例的 DCD/  $(NH_4$  ) $_2SO_4$ 并不能起到较好的抑制作用。过多量 DCD 不但不能完全抑制土壤中的氮硝化 ,而且由于 DCD 本身是一种高氨态氮含量的化合物 过量的 DCD 的加入参与土壤中氮元素的化学反应。至于 E 处理  $N_2O$  释放特别高的原因可能有两个:其一是在裂缝产生的过程中特别适合硝化反应发生 ,而大量的游离态铵离子的加入 ,也使硝化作用反应物的底物充足 ,从而导致了硝化作用迅速发生 ,而 DCD 抑制剂来不及起到抑制作用 ,其二是在裂缝产生过程中 ,产生了优先流 ,DCD 随着优先流已经运移到渗漏液中 ,导致 DCD 量不足以抑制铵离子的反应 ,因而导致了大量的  $N_2O$  释放。

因为 DCD 能完全抑制没有氮肥料加入,且伴随着裂缝产生过程中的土壤的硝化作用,因而能降低该处理土壤的  $N_2O$  的释放。 B 处理加入的 DCD 硝化抑制剂在抑制土壤中的外加氮肥的硝化作用。但随着土壤逐渐变干,土壤中的环境越来越适合氮元素的硝化条件,导致 DCD 抑制剂还不能完全抑制土壤中氮的硝化反应,因而在裂缝产生过程中,仍旧有  $N_2O$  释放通量高峰的出现。 C 和 D 处理的 DCD 抑制剂加入的量比 B 处理多,但是在这过程,他们土壤中释放的  $N_2O$  释放通量却比 B 处理还要大,这说明 DCD 抑制土壤中的氮硝化有一个比例,过多量 DCD 不但不能完全抑制土壤中的氮硝化,而且由于 DCD 本身是一种高氨态氮含量的化合物,过量的 DCD 加入将参与土壤中氮元素的化学反应。

据此 ,可以得出 ,在土壤中肥料 ( $NH_4$  ) $_2SO_4$ 加入量 (每千克土壤中外加  $N \le 3g$  )相对较少的情况下 ,DCD 抑制剂能抑制裂缝产生过程中的  $N_2O$  释放。在土壤中肥料 ( $NH_4$  ) $_2SO_4$ 加入量 (每千克土壤中外加  $N \ge 6g$  )相对较多的情况下 ,DCD 抑制裂缝产生过程中的  $N_2O$  释放效果不明显。

#### 2.2.2 裂缝的产生与含水量对 N<sub>2</sub>O 释放的影响

CK、B、C、D 和 E 处理在培育过程中,都有排放高峰的出现。尽管加入的 DCD 硝化抑制剂能够抑制土壤中氮元素的硝化作用。但随着土壤逐渐变干,土壤中的环境越来越适合氮元素的硝化条件,导致 DCD 抑制剂还不能完全抑制土壤中氮的硝化反应,因而在裂缝产生过程中,仍旧有  $N_2O$  释放通量高峰的出现。

从 E 处理可以得出在培养的第 8 ~ 10 天土壤释放的  $N_2O$  通量达到整个处理的最大值。这是因为在第 8 ~ 10 天的时间内,裂缝已经发展达到最大且向平衡稳定发展,根据文献可以知道在裂缝产生过程中,裂缝开始趋向稳定的过程是土壤释放  $N_2O$  的高峰时期 10 。第 11 天,由于复水的影响,使土壤中的大孔隙也充满水,而堵塞了 10 0 向空气中的传递,同时土壤不利于硝化反应的大量发生。因此,在裂缝稳定后的复水,能抑制 10 0 的释放。复水后,随着土壤水分的减少,土壤充气孔度增加,10 0 的释放遵循着裂缝产生过程的 10 0 称规律,但是释放强度不如第 1 次强。

#### 2.2.3 渗漏液中溶解的 $N_2O$ 对 $N_2O$ 气体释放的影响

前 16d 的渗漏液中  $N_2O$  浓度变化的连续监测结果见图 3 和图 4 ,CK、A、B、C 和 D 这 5 种处理的渗漏液中  $N_2O$  浓度变化在前 4d 波动较大 ,在这之后其深度基本不变化。而 E 处理的渗漏液中  $N_2O$  浓度变化在整个培育期都一直在波动变化 ,从第 4 天起 ,它的最低值也有  $1000000~\mu g~L^{-1}$  ,且其浓度极显著高于 CK、A、B、C 和 D 5 种处理。计算得出 CK、A、B、C 、D 和 E 这 6 种处理的渗漏液中  $N_2O$  平均浓度分别为 41633. 61 , 29694. 42 74504. 02 55762. 74 93543. 07  $\mu g~L^{-1}$  和  $12550063~\mu g~L^{-1}$ 。渗漏液中的  $N_2O$  浓度都是过饱和的。

过饱和的  $N_2O$  随时都有可能向大气中逸出。比较图 1 和图 2 ,可以直观得出 ,在裂缝产生过程中 ,渗漏液中  $N_2O$  的浓度越高 ,其向空气释放的  $N_2O$  量就越多。这是因为由于渗漏液中的硝态氮浓度在增加 ,导致渗漏液中  $N_2O$  的浓度也增加 ,而其中尤以 E 处理的最高。

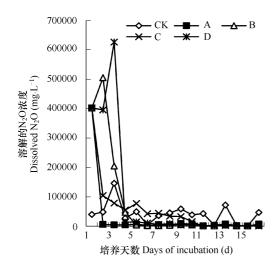



图 3 CK、A、B、C 和 D 5 种处理的渗漏液中 N<sub>2</sub> O 变化

Fig. 3 Dynamic evolution of  $\mathrm{N}_2\mathrm{O}$  in leaching solution among CK , A , B , C and D treatment

# 2.2.4 渗漏液中 pH 对 N<sub>2</sub>O 释放的影响

前 16 天的渗漏液中 pH 值变化的连续监测结果见图 5 ,计算得出 CK、A、B、C 、D 和 E 这 6 种处理的渗漏液中平均 pH 分别为 6. 69 5. 93 5. 63 6. 00 5. 65 和 6. 53。从图 3 可以看出 CK 和 E 处理的 pH 值最高 ,其演变规律相似 ,而 CK 的 pH 值相对 E 处理又较高一点。 E 和 E 处理的 E 处理的 E 处理的 E 的处理的 E 的处理的 E 的情较低 ,且其演变规律相似。 E 和 E 处理较为明显。 E 个的处理的 E 的E 的处理的 E 的E 的 E 的处理的 E 的处理较为明显。 E 的处理的 E 的 E 的 E 的 E 的 E 的 E 的 E 的 E 的 E 的 E 的 E 的 E 的 E 的 E 的 E 的 E 的 E 的 E

用 SPSS 软件统计分析得出土体释放的  $N_2O$  通量、 渗漏液中的  $N_2O$  浓度与 pH 三者之间的线性相关性见表 1。从表 1 可以看出 ,土体释放的  $N_2O$  通量和渗漏液中的  $N_2O$  浓度之间不存在相关性 ,土体释放的  $N_2O$  通量和渗漏液中的 pH 值之间也不存在相关性。但是渗

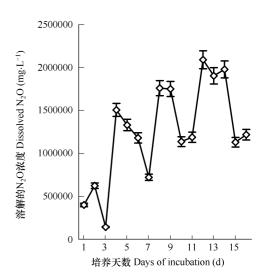



图 4 E 处理的渗漏液中 N<sub>2</sub>O 变化

Fig. 4 Dynamic evolution of N2O with E treatment in leaching solution

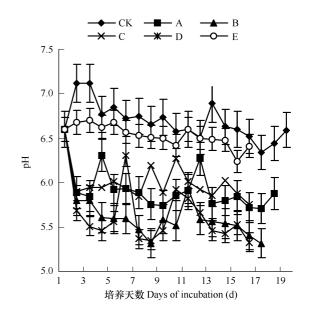



图 5 渗漏液中的 pH 变化

Fig. 5 Dynamic evolution of pH in leaching solution

漏液中的  $N_2O$  浓度和 pH 值之间均存在正的相关性 ,这 6 种处理的相关性都是显著的 ,因此可得渗漏液中的 pH 值能够指示渗漏液中的  $N_2O$  浓度。由于土壤中的  $N_2O$  释放是伴随着裂缝的产生 ,因此土柱中的土壤的孔隙率不稳定 ,导致了土壤产生和传送  $N_2O$  的不均匀性 ,还有由于渗漏液中的  $N_2O$  浓度是过饱和的 ,使得土壤释放的  $N_2O$  通量与渗漏液中的  $N_2O$  浓度之间没有表现出明显的相关性。

# 3 结论

通过模拟稻田土壤在淹水后加入不同量的  $(NH_4)_2SO_4$ 和 DCD 抑制剂的溶液 ,让土壤自然蒸发变干 ,直至

土壤产生裂缝 裂缝稳定 ﹐再复水 ﹐最后土壤又自然变干的连续培养试验 ﹐可获得土体释放的  $N_2O$  通量和渗漏液中的  $N_2O$  浓度。试验结果表明 ﹐土壤中肥料  $(NH_4)_2SO_4$ 加入量 (每千克土壤中外加 N ≤ 3g)相对较少的情况下 ﹐DCD 抑制剂能抑制裂缝产生过程中的  $N_2O$  释放。在土壤中肥料  $(NH_4)_2SO_4$ 加入量 (每千克土壤中外加 N ≥ 6g)相对较多的情况下 ﹐DCD 抑制裂缝产生过程中的  $N_2O$  释放效果不明显。裂缝产生稳定后的复水能减少  $N_2O$  向空气中的释放。渗漏液中的  $N_2O$  浓度和 pH 值之间存在显著的正线性相关。

表 1 土体释放的  $N_2O$  通量、渗漏液中的  $N_2O$  浓度与 pH 之间的线性相关性分析

Table 1 The relative analysis among  $N_2O$  flux , dissolved  $N_2O$  and pH in leaching solution

| 各处理<br>Treatment | 土体释放的 $N_2O$ 通量和渗漏液中 $N_2O$ 浓度的相关系数 Relative coefficient between $N_2O$ emissions and dissolved $N_2O$ of leaching solution | 土体释放的 $N_2O$ 通量和 $pH$ 的相关系数 Relative coefficient between $N_2O$ emissions and $pH$ of leaching solution | 渗漏液中 $N_2O$ 浓度和 $pH$ 的相关系数 Relative coefficient between dissolved $N_2O$ and $pH$ of leaching solution |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| CK               | 0.0333                                                                                                                      | 0.1189                                                                                                  | 0.6618 *                                                                                               |
| A                | 0.1986                                                                                                                      | -0.1009                                                                                                 | 0.7189*                                                                                                |
| В                | -0.1459                                                                                                                     | 0.1260                                                                                                  | 0.6877*                                                                                                |
| C                | -0.0041                                                                                                                     | -0.0265                                                                                                 | 0.7409*                                                                                                |
| D                | -0.2200                                                                                                                     | 0.0924                                                                                                  | 0.6890 *                                                                                               |
| E                | 0.0677                                                                                                                      | -0.24021                                                                                                | 0. 7303 *                                                                                              |

<sup>\*</sup>p < 0.05

#### Reference:

- [1] IPCC. Climate changes 1995 the science of climate change. contribution of group I to second assessment report of the intergovernmental panel to climate change. 1995: 15.
- [2] Delgada J A, Mosier A R. Mitigation alternativest decrease nitrous oxide emissions and urea-nitrogen loss and their effect on methane flux. J. Environ. Qual. ,1999 28 (6) 1105 1111.
- [3] Huang S H, Lu J, Tian G M. Effects of cracks and some key factors on emissions of nitrous oxide in paddy fields. Journal of Environmental Science, 2005, 17 (1) 37-41.
- [4] Stevens R J, Laughin R J, Malone J P. soil pH affects the processes reducing nitrate to nitrous oxide and dinitrogen. Soil Biol. Biochem. 1998, 30 (8/9) 1119-1126.
- [5] Jia L Q, Qu Z Q, Jin H Y, et al. Macropores and preferential flow and their effects on pollutant migration in soils. Acta Pedologica Sinica 1999, 36 (3) 341 347.
- [6] Thomas Appel. Non-biomass soil organic N-the substrate for N mineralization flushes following soil drying rewetting and for organic N reduced CaCl<sub>2</sub>-extractable upon soil drying. Soil Biol. Biochem, 1998, 30, 31445—1456.
- [7] Thomas G E, Philips R E. Consequences of water movement in macropores. J. Environ. Qual., 1979 & Q ) 149 152.
- [8] Huang S H ,Lu J ,Zeng G H. The influences of generation of paddy soil cracks on N<sub>2</sub>O emissions. China Environmental Science 2004 24 (4) #10 -413.

#### 参考文献:

- [5] 贾良清,区自清.大孔隙和优先水流及其对污染物在土壤中迁移行为的影响.土壤学报,1999,36(3)341~347.
- [8] 黄树辉 ,吕军 ,曾光辉. 水稻土裂缝的生成对 N<sub>2</sub>O 释放的影响. 中国环境科学 2004 ,24 (4) #10 ~413.