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Abstract Based on Surface Water Eutrophication Control Standard recommended by Ministry of Water Resources of China

a simple neural network ensemble NNE model was constructed for comprehensive eutrophication assessment of lake and
reservoir. This model adopted Chlorophyll a Total Phosphorus Total Nitrogen Chemical Oxygen Demand and Secchi
Depth as inputs and the output is a continuous variable which represents the trophic state. 1000 input/output pairs were
produced with linear interpolation method according to the above standard. 100 pairs were selected randomly from all data
pairs as testing sample and the rest used as training sample. Back propagation BP neural network with same topology
structure were applied to all subnets of this ensemble model and were trained using resilient back propagation and gradient
descent with momentum as the learning algorithm. The number of hidden nodes of subnet and number of subnets of
ensemble are 3 and 40 respectively determined with the incremental method. All subnets were trained with different initial
weights and bias. The results of using this model to assess the trophic state of Chaohu Lake showed that this model is
insensitive to initial weights and the generalization ability is improved remarkably. With respect to assessment results

there is no apparent difference between this model and the interpolation scoring method but there is significant difference
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between this model and the comprehensive trophic level index method. The correlation coefficients of assessment results
gained by this model and those by the comprehensive trophic level index method and the interpolation scoring method are 0.
9406 and 0.8891 respectively. The results of contrast analysis indicate this model has learned the potential assessment

rules from assessment standard and assessment results of this model are objective and reliable.

Key Words eutrophication comprehensive assessment back propagation BP neural network neural network ensemble

NNE  generalization ability

m
n artificial
neural network ANN l
ANN
8 a chlorophyll a Chla secchi depth SD
total phosphorus TP total nitrogen TN chemical oxygen demand COD,,
8 5-5-1 BP back
propagation : Chla TP TN COD,,, 6
5-8-6 BP ’
5 Chla SD TP TN  COD,,
4 TP TN
COD,,, 5 100
> 2001 ANN
Chla
TP TN COD,, 6
5-3-1 BP o
BP
Over Fitting  BP
BP 0 BP
neural network ensemble NNE
NNE “NNE

" NNE



2 727
NNE
78
NNE NNE
NNE
NNE §
MathWorks MATLAB
NNE 1
2 NNE 3
BP NNE
1 NNE
1.1
2001 Chla TP TN COD,,, SD 0~100
comprehensive trophic level index method TLI
9
1 scoring method SCO
10
1 NNE
1
Table 1 Control standard for eutrophication of surface water
a
Trophic state Score Chla mg m~* TP mg 177 T™N mg L~! COD, mg L~! SD m
10 0.5 0.001 0.02 0.15 10. 00
Oligotropher 20 1.0 0.004 0.05 0.40 5.00
30 2.0 0.010 0.10 1.00 3.00
40 4.0 0.025 0.30 2.00 1.50
Mesotropher
50 10.0 0.050 0.50 4.00 1.00
60 26.0 0.100 1.00 8.00 0.50
70 64.0 0.200 2.00 10.00 0.40
80 160.0 0. 600 6.00 25.00 0.30
Eutropher
90 400.0 0.900 9.00 40. 00 0.20
100 1000.0 1.300 16.00 60.00 0.12
1.2
1 100 1000
10 100 900
0 0.1
ANN "
MATLAB premnmx -1
+1 postmnmx 2
2004 12 2 TLI ~ SCO
1.3 BP back propagation

1.3.1
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mse mean squared error
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Table 2 Monitored data for trophic indicators of east Chaohu Lake in 2004

a
Month  Chla mg m~* TP mg L.~! TN mg L~! CODy, mg L' SD m TEILIscm-e Interpolation Score
1 6.54 0.127 1.284 3.34 0.35 53.25 58.29
2 9.40 0.039 1.358 4.72 0.45 51.66 55.00
3 8.22 0.082 1.320 5.03 0.38 54.36 58.24
4 5.91 0.086 0.450 6.00 0.45 50.55 53.58
5 6.13 0.123 2.220 7.96 0.30 59.41 63.26
6 7.84 0.137 1.470 4.66 0.45 55.14 58.29
7 8.26 0.019 1.090 4.00 0.40 48.03 52.80
8 8.79 0.064 1.660 4.15 0.40 53.38 57.55
9 7.29 0.088 0.840 4.00 0.30 52.58 57.98
10 5.93 0.050 0.660 3.81 0.30 49.29 55.09
11 4.69 0.086 0.550 1.63 0.40 44.55 51.13
12 3.51 0.075 0.520 3.45 0.35 47.26 53.04
1.3.2
BP 3
5 1 0-~100 -1~1
5 1
1 BP 50
1.3.3
tansig purelin
BP MATLAB trainrp
MATLAB learngdm
0.6 0.01
1.3.4
early stopping
300 ~500 1000
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Table 3 Variation indicators of assessment results of working sample by NNE and SBP
Month
[tem
1 2 3 4 5 6 7 8 9 10 11 12
NNE Mean 54.78 54.68 56.48 56.64 62.71 56.63 53.04 54.94 54.94 53.55 49.87 52.93
. 0.402 0.384 0.272 0.254 0.553 0.379 0.329 0.501 0.191 0.157 0.401 0.226
Standard deviation
%
L .0_ 0.733 0.702 0.482 0.448 0.882 0.669 0.620 0.912 0.347 0.293 0.804 0.427
Variation coefficient
SBP Mean 55.59 56.07 57.41 55.83 64.53 57.45 54.25 56.76 55.14 53.77 50.00 52.76
. 2.688 2.803 1.943 1.416 2.502 2.416 2.900 3.483 1.325 1.567 1.908 1.095
Standard deviation
%
5 4.835 5.000 3.384 2.536  3.877 4.206 5.346 6.137 2.404 2.915 3.816 2.075

Variation coefficient
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