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Response of activated oxygen metabolism to water stress in different drought-tolerant
maize hybrids and their parents
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Abstract: Drought might be the biggest adversity in the nature and might seriously affed maize ( Zea Mays L.), one of the most
important food-feedstuff crops n China. Although ecologists and physiologists have focused on the response of the activated axygen
metabolism to water stress in maize for a long period and made a great progress, the changes of activated oxygen metabolism, under
water stress, and the relationship between the hybrid” s and its parents’ ability to maintain the balance of adivaed axygen
metabolism in different droughttolerant maize during the whole life are still lacking. A pot cultivation experiment, therefore, was
onduded in the waterproof shed to try to explore these issues. Different drought tolerant maize hybrids, Yedan 2, Yedan 13 and
their parents were used in the experiment. The result showed that under water stress: (1) The O3 production rate and the content

of H,0, in maize leaves inareased rapidly, whereas the activities of SOD, CAT, ASP, and the content of ASA were inareased a

little in the early growing stage and deaeased obviously in the late growing stage. Consequently the content of MDA, the outcome
of lipid peroxidation, was much higher in the whole life period, especially in the late stage. ( 2) There was a difference in the
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ability to maintain the balance of activated oxygen metabolism between different drought-tolerant maize hybrids, and much more
difference was found in the lae period. The high drought tolerant maize, Yedan 2 and its parents, showed a higher ability to
maintain the balance of ad ivated oxygen metabolism. In Yedan 2 and its parents, the increase in the 07 production rate and the
ontent of H,0, in maize leaves was less, accompanied by a much more increase in the adivities of SOD, CAT and ASP, and in
the content of ASA in the early stage, a much more inaease in the enzymes’ activity and the content of scavengers in the late
stage, and a smaller inaease in the content of MDA during the whole life period. The changes were to the contrary in Yedan 13
and its parents whose drought-tolerance was low. (3)The hybrid’ s ability to maintain the balance of ad ivated oxygen metaholism
was decided genetically by that of its parents. There was a positive correlation in WS/ CK ratio between the hybrid and the averages
of its parents. Moreover, the correlation was significant in tems of CAT, ASP, and ASA.
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Fig.1 Generating rate of O35 in leaves of different drought-tolerance maize under water sress
A:YD2 YD2 and its parents; B: YD13 YD13 and its parents; [ : 9" leaf expanding; 11 : 12" leaf expanding;
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Fig. 3 SOD activiy in leaves of different drought-tolerance maize under water stress
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Fig. 4 CAT activity in leaves of different drought-tolerance maize under water stress
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Fig. 5 AsP activity in leaves of different droughttolerance maize under water stress
, YD2 CAT  AsP
: YDI13 CAT  AsP ,
) ) H-0: ,
H.0: )
CAT AsP
2.2.2 AsA , AsA
YD2 AsA ; YD13
AsA ;
AsA )
, YD13 D340 478 AsA 20.48% 36.53%  21.05%,
YD2(13.07%) Y107(5.46%)  HZ4(11.90%)
AsA , AsA
O CKYD2 m WS YD2 OCK YD13 m WS YD13
125 - A CK Y107 @ WS Y107 125 CK D340 & WS D340
§ 2 CKHZ4 ® WSHZ4 BCK478 B WS478
= 100 100
oE
o 3
Eg 75 75
I o
ﬁg“ 50 50
<
25 25
i35 Period
6
Fig. 6 AsA content in leaves of different drought-tolerance maiz under water dress
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Fig. 7 MDA content in leaves of different droughttolerance maize under water stress
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