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Application and comparison of generalized models and classification and

regression tree in simulating tree species distribution
CAO Ming—Changl‘ ¢, ZHOU Guang—Sheng‘ ', WENG En—Shengl (1. Laboratory of Quantitative Vegetation Ecology.

Institute of Botany. Chinese Academy of Science, Beijing 100093 ,China; 2. Graduate School of Chinese Academy of Sciences, Beijing 100039,
China). Acta Ecologica Sinica2005,25(8) :2031~2040.

Abstract: Comparison of three models: Generalized Linear Models (GLM ), Generalized Additive Models (GAM ) and
Classification and Regression tree (CART) in simulating tree species distribution in China were done in this paper, in order to
select a suitable model for simulating and predicting tree species distributions under climate change in the future. The
simulating 15 tree species distributions by three models indicated that three models could simulate the tree species geographical
distributions very well except Pinus tabulaeformis and Quercus liaotungensis. GAM model is the best one among them.
Combining with geographical information system (GIS), the simulating effects for geographical distributions of Cyclobalanopsis
glauca, Schima superba,Pinus koraiensis, and Pinus tabulaeformis were compared. The results showed that three models could
simulate the geographical distributions of of Cyclobalanopsis glauca and Schima superba very well; GLM model could not
simulate the geographical distribution of Pinus koraiensis very well; and three models could not simulate the geographical
distribution of Pinus tabulaeformis. The relative performance of different models was discrepant among species, suggesting
that the most accurate model varies between species. Moreover, the geographical distributions of typical tree species:

Cyclobalanopsis glauca and Quercus mongolica under climate change were studied based on GLM model, GAM model and
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CART model. The simulated results of Cyclobalanopsis glauca geographical distributions by GLM model and GAM model were
similar, and showed its geographical distribution would shift to the west and the north under climate change, however CART
model indicated that the Cyclobalanopsis glauca geographical distributions in Southern Guangdong province and southern
Guangxi province would disappear. The simulated results of Quercus mongolica geographical distributions by three models were
similar, and they would shift to the west. and the expanding areas ranged from GAM model, GLM model to CART model.

Key words :species distribution; generalized linear models; generalized additive models; classification and regression tree
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Table 1 AUC and Kappa values for simulated 15 tree species distributions by GLM,GAM and CART
. AUC Kappa
Tree species

GLM GAM CART GLM GAM CART
Cyclobalanopsis glauca 0. 985 0.992 0.977 0. 855 0. 892 0. 898
Fagus longipetialata 0.963 0. 980 0.922 0. 664 0. 794 0. 675
Castanopsis eyrei 0. 981 0.993 0. 954 0. 754 0. 857 0. 805
Schima superba 0. 995 0. 996 0. 995 0. 886 0. 905 0.919
Lithocarpus glaber 0. 964 0.968 0. 948 0. 669 0. 645 0. 664
Cornus wilsoniana 0. 985 0.987 0. 965 0. 802 0. 801 0.799
Sapium sebiferum 0. 987 0.992 0.962 0.893 0.913 0. 906
Idesia polycarpa 0.973 0.978 0.953 0.741 0. 741 0.793
Pinus tabulaeformis 0. 846 0.948 0. 894 0. 337 0.595 0. 640
Quercus liaotungensis 0. 843 0.932 0. 747 0. 281 0.501 0.434
Pinus koraiensis 0. 934 0. 986 0.975 0. 464 0. 876 0. 854
Quercus mongolica 0. 934 0. 983 0. 944 0. 622 0.783 0.763
Symplocos paniculata 0. 989 0.992 0.993 0. 887 0. 899 0.901
Juglans mandshurica 0. 892 0. 986 0. 995 0. 340 0. 764 0. 809
Pistacia chinensis 0.996 0. 997 0.993 0.933 0.952 0. 936
Mean 0.951 0. 980 0.948 0. 676 0. 795 0. 786
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Fig.1 Actual and simulated distribution for Cyclobalanopsis glauca according to GLM,GAM and CART

s Dark corresponds to distribution, white to no distribution



2035

GAM M1 Threshold=0.48 CART 44 Threshold =0.50

2 3
Fig. 2 Actual and simulated distribution for Schima superba according to GLM,GAM and CART

s Dark corresponds to distribution, white to no distribution
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Fig. 3 Actual and simulated distribution for Pinus koraiensis according to GLM,GAM and CART

s Dark corresponds to distribution, white to no distribution
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Fig. 4 Actual and simulated distribution for Pinus tabulaeformis according to GLM,GAM and CART

s Dark corresponds to distribution, white to no distribution
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Fig.5 Comparison of actual and simulated distribution for Cyclobalanopsis glauca under climate change according to GLM.GAM and CART
s Dark colour corresponds to stable distribution, dark grey to new distribution, clear grey to losed

distribution
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Fig. 6 Comparison of actual and simulated distribution for Quercus mongolica under climate change according to GLM.GAM and CART
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