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Physiological response of desert plants to watering in hyper arid areas of Tarim

River
RUAN Xiao', WANG Qiang', CHEN Ya-Ning?*, LI Wei-Hong?, XU Ning-Yi' (1.

Technology, Zhejiang University, Ningbo 315100, China;2. Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumgqi

Ningbo Institute of

830011, China). Acta Ecologica Sinica,2005,25(8):1966~1973.

Abstract: The physiological responses and adaptive strategies to water and salinity stress of Populus euphratica (arbor species) ,
Tamarix spp (bush species), and Apocynum venetum (herbaceous species) were studied in hyper-arid environment of Tarim
River. The groundwater table, saline content of groundwater as well as the content of free proline, soluble sugars, plant
endogenous hormone (ABA, CTK) of leaves in three species were monitored and analyzed at the lower reaches of Tarim River
in study area where five transections were fixed at 100 m intervals along a vertical sampling line at pre- and post-watering.
Saline stress dramatically increased soluble sugars concentration of three species. Differences in sugar accumulation were
determined among species at different transactions. The free proline concentration of leaves in Tamarix spp and Populus
euphratica underwent a proportional decrease with differently elevated degree of groundwater table after watering. There was
least correlation between the soluble sugars and proline stimulation in Tamarix spp. It was strongly suggested that Tamarix
spp developed the different strategy to accumulate organic solutes to adapt stress environment; the soluble sugars and proline
accumulation responded to the changes of groundwater table independently; the soluble sugars accumulation occurred under

salt stress, whereas proline accumulation was more significant under drought stress. The concentration and concentration
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increment of ABA and CTK involved in stress resistance of three species were also determined. The trend of ABA and CTK

concentration increment in Populus euphratica had a different pattern with other two species. Expressed as a function of ABA

concentration increment in leaves, Apocynum venetum and Tamarizx spp showed the different solute accumulation in response to

groundwater table. There was a significant correlation between ABA accumulation and A [proline | in Apocynum venetum as

well as between ABA accumulation and /A\[sugar ] in Tamarizx spp.

Key words :soluble sugars; free proline; Endogenous ABA; CTK; groundwater table;water and saline stress
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AL 1=C I 1 /L ]
1.6
(50mg)1mL 80% . . 15min, 10000g 5min,
2 . 45C ,1. 0mL s Sephadex QAE-A-25(Pharmacia Biotech,
Sweden) . (1. 0mL -+ 2. OmL ) ,300pL. . HPLC . 300mm X 7. 8mm
(carbohydrate-H" , HYDERSIL, UK), 35C, H,SO, 0. 005M, 0. 6ml./min.
AL 1=L I 1 /L ]
1.7 HPLC
(0. 5g) ,250pL. 4 C ,12000g 10min, 40 C ,30pl 10% CHSCN o
HPLC , LC-10A TVP(PDA), Shim pack CLC-Cg4(0.15m X 6.0m ¢), 1. 5mL /min,
250nm; A 10% CH;CN(CF;COOH pH=3.0), B 60% CHsCN; (ABA) (CTK)
Aldrich s R
1.8
10 s 3 o SPSS
R N ANOVA .
2
2.1
1 . ’ 100m
—5.82m —1.73m, 43. 61mmol/L 72. 54mmol /L ( 66.34%);
, 300m —7.66m —5.56m, 71. 02mmol /L 93. 48mmol /L (
31.62%); 200m —7.25m —3.39m.,
38. 56mmol /L 36. 59mmol /L ( —5.11%); . . 300m  100m
s ., 300m ,200m o
400m 500m —6. 64m —6.08m,—7.05m —6.80m,
41.15mmol/L 42.17mmol/L.71. 83mmol/L 72.55mmol/L ( 2.48%
1.00%). .
2 3 o
1
Table 1 Groundwater table and salinity of groundwater at study area in different transections from riverbank
(m)® A . _ . ,
(m) HCO? Cl SO CaZt Mg?* Na* K+ = o
. Groundwater Total®
Distance
table (mmol)
100 5.82 a 7.08 11.32 3.57 1. 85 3.08 16. 33 0. 38 43.61
1.73 b 3. 65 22.14 10 2.83 6.42 26. 65 0. 85 72.54
200 7.25 a 2.56 10. 87 5.52 1. 60 3. 50 14.13 0.38 38.56
3.39b 1.19 10. 99 5.10 0.83 2.75 15.22 0.51 36.59
300 7.66 a 7.13 20. 45 8.13 2.08 7.04 25.57 0.62 71.02
5.56 b 7.02 29.52 11.56 3. 99 10. 79 29.91 0. 69 93.48
400 6.64 a 7.04 10. 37 3. 54 1. 65 2.92 15.22 0.41 41.15
6.08 b 6.52 9.72 4. 90 1.15 4. 25 15.22 0.41 42.17
500 7.05 a 3.58 22.14 10. 10 2.93 7.29 25. 00 0.79 71.83
6.80 b 3. 65 22.14 10.01 2.83 6.42 26. 65 0. 85 72.55
a.b a, b meaning pre- and post-watering ; () 3 The values of groundwater table are
means of three replications. ;@ 7 . 3 The concentration of total

salt was calculated on the basis of these seven ions;The values of salinity groundwater in each transection are means of three replications
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Table 2 The data of growth state of three species to the groundwater table

Speci Distributing depth of Groundwater table of Groundwater table of Lethal groundwater
Species
pecies main-root (m) promoting growth(m) inhibiting growth(m) table of growth(m)
Abocynum venetum 2~3 1.5~4 >5 >6
Tamarix spp. <5 1~6 =>17 >10
Populus euphratica <7 1~4 5~6 >8
Data are collected by our group
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Fig. 2 Changes of Soluble sugar concentration in leaves of three  Fig. 3 Changes of free proline concentration in leaves of three
species at different trsections of study area with watering (Each point species (Each point represents the average of 10 measurements
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Fig. 4

sugar stimulation in leaves of three species at different transections
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