25 8 Vol. 25,No. 8

2005 8 ACTA ECOLOGICA SINICA Aug. ,2005
1,2 1,2 = 1.2 1.2 1.2
’ ’ ’ ’
(1. s 310029;2. s 310029)
. , 30 pmol/L
AlCl, s 30 h 30.2% s
30 pmol/L AlCl, 24 h 70.9%., 0~10 mm
10~20 mm 5 0~10 mm 10~20 mm ,
; 10 pmol/L 20 pmol/L ,
R 1.0 mol/L NH; « H,O 2 h s 20.9%,
:1000-0933(2005)08-1890-08 :Q946. 914 (A

Wheat root responses to aluminum toxicity in relation to cell wall composition
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Abstract: Aluminum (Al) toxicity is an important factor determining the distribution of plant species and ecotypes in natural
habitats and crop productivity in acid soils. Aluminum primarily affects root growth by interfering with processes critical for
the regulation of growth in the root apex. Despite a large research effort in the last 30 years, the mechanism of Al-induced
inhibition of root growth and the reasons for the spatial differences in Al sensitivity between apical root zones are still not
clear. Over the last few years, evidence has accumulated supporting the hypothesis that the root apoplast plays an important
role in the expression of Al toxicity and resistance. The objective of the present study is therefore to investigate the
relationships between the response of wheat (Triticum aestivum 1..) roots to Al toxicity in relation to either cell wall
composition in different root segments and Al adsorption/desorption by root apex cell walls.

Hydroponic experiments were carried out in a controlled environment set at 25 C /20 C day/night temperature and 10 h
darkness. Seedlings of an Al-sensitive wheat cultivar were grown in solution containing 0. 5 mmol/L. CaCl, at pH 4. 5 for 3
days. The axial roots from 3-day-old seedlings were used for all experiments. Root elongations with time courses and Al

concentration treatments were measured to evaluate the inhibitory effect of Al on wheat roots. The Al concentrations in
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0~10 mm and 10~ 20 mm root segment were determined after seedlings were treated with 30 pmol/L AICl; for 24 h. Cell
walls were extracted from the 3-day-old roots (0~10 mm and 10~20 mm root segment) for the kinetics of Al adsorption and
desorption studies, the adsorption solution consisted of 10 or 20 pmol/L AICl; in 0. 5 mmol/L CaCl, at pH 4. 5, after
adsorption the Al adsorbed was desorbed by 2. 5 mmol/L CaCl, at pH 4. 5. As NH; * H,O can effectively decrease the degree of
pectin esterification (DM) in cell walls, cell walls were pretreated with 1. 0 mol/L. NH; « H,O for 2 h to decrease the DM, the
residue was ready for the kinetic study. The NH; « H,O-treated cell walls were also used to investigate the role of the DM of
pectin in Al binding, and the role of cell wall composition in Al toxicity. The uronic acid content in cell walls of two root
segments was also determined.

The main results of this study are as follows. Root growth of wheat plants was markedly inhibited by the exposure to 30
pmol/L AlCl; solution, and the root length was only 30% of that of the control. The relative root elongation rate of wheat was
markedly decreased with increasing Al concentrations, and the inhibitory rate of root elongation was up to 70. 9% after 24 h
treatment with 30 pmol/L. AICl;. Both Al and pectin uronic acid concentrations in cell walls of 0~10 mm root segments were
significantly higher than those of 10~20 mm., the Al concentration in 0~10 mm root segments was about 1. 5 times that in 10
~20 mm, while the pectin uronic acid concentration in 0~10 mm was 1. 47 times of that in 10~20 mm root segments. The
amount of Al adsorbed by the cell walls of 0~10 mm root segments was significantly higher than that of 10~20 mm (17.2%).
the amount of Al adsorbed by the former was 23. 39 pmol/g cell wall, and 19. 96 pmol/g cell wall by the later. The desorption
rate was slightly lower in cell walls of 0~10 mm root segment than that of 10~20 mm. The amount of Al adsorbed by root
cell walls was significantly increased (by 164.4%) with increasing solution Al concentrations from 10 pmol/L to 20 pmol/L,
and the desorption rate was not affected. After reducing the DM of cell walls with 1. 0 mol/L. NH; *« H,O for 2 h, the total
amount of Al absorbed was decreased by about 20. 9% , and the desorption rate was marginally affected. The present data show
that the root tip is the primary target of Al toxicity and the importance of pectin concentration, DM of pectin for Al binding to
cell walls and Al accumulation in different root segments. These results also imply that Al binding to cell walls represents an
important pathway in the response of wheat root to Al toxicity.
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Table 1 Difference of the uronic acid concentrations of cell wall composition in two apical root segments (pg/mg)

Segment (mm) Pectin 1(HCD 2(HC2) Total
0~10 14.3541. 30a 34.894+5.03a 20.20=+1.93a 69.4448.53a
10~20 9.74+2.74b 18.07+1. 35b 11.94+1.51b 39.7545. 60b
(p<<0.05)
2.4
N 1. 2 1. 1 ,0~10 mm
10~20 mm o s
,0~10 mm 10~20 mm 14.35+1.30.9.74+2. 74 (g/mg s
1.47 1 2 s 1 1. 93
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