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The co-operation of leaf orientation. photorespiration and thermal dissipation

alleviate photoinhibition in young leaves of soybean plants
JIANG Chuang-Dao', GAO HUI-Yuan®, ZOU Qi*, JIANG Gao-Ming'*, LI Ling-Hao' (1. Laboratory of

Quantitative Vegetation Ecology, Institute of Botany. Chinese Academy of Sciences. Beijing 100093; 2. Department of Plant Science. Shandong
Agricultural University, T'aian 271018). Acta Ecologica Sinica,2005.25(2) :319~325.

Abstract : Chloroplast pigments, gas exchange, chlorophyll a fluorescence kinetics and leaf orientation were extensively studied
in soybean leaves from emergency to {ull expansion. During the development of soybean leaves, chlorophyll content, the ratio
of Chl a/ Chl b and photosynthesis increased, indicating a gradual development of photosynthetic apparatus during leaf
expansion. During daily courses, not only fully expanded leaves, but also young leaves were not seriously photoinhibited by
strong irradiance under field condition. However, serious photoinhibition occurred in young leaves when vertically exposed to
1200 pmol/(m?* » s) irradiance, and the photoinhibition was alleviated with leaf expansion. It can be referred that there might
be some regulative mechanisms behind these controversial phenomena. Under 1200 pmol/(m” * s) irradiance, photorespiration
(P,) in young leaves measured by gas exchange were obviously low. whereas the ratio of photorespiration/mass photosynthesis
(P,/P,) were distinctly enhanced, demonstrating that photorespiration might play a mild role against photoinhibition in young
leaves. When leaves were placed in a horizontal position and vertically subjected to 1200 pmol/(m?* + s) irradiance, the actual
photosystem II (PSII) efficiency (@psp) in young leaves were drastically down regulated, whereas, non-photochemical
quenching (NPQ) were increased significantly. The significant down-regulation of ®ps; in young leaves under high irradiance

was relieved gradually with leaf expanding, and NPQ declined during this process. Compared with the fully expanded leaves.,

:2003-10-17; :2004-06-04
(1973~), s s . E-mail:jcdao@ibcas. ac. cn
* Author for correspondence. E-mail ; jgm@ht. rol. cn. net

Foundation item:K. C. Wong Education Foundation(Hong Kong) and China Postdoctoral Science Foundation
Received date:2003-10-17; Accepted date:2004-06-04

Biography : JIANG Chuang-Dao,Ph. D. .mainly engaged in photosynthesis and eco-physiology. E-mail : jedao@ibcas. ac. cn



320 25

young leaves, containing higher xanthophyll pool, exhibited a much higher level of zeaxanthin (Z) 4+ antheraxanthin (A) to
Chl when exposure to high irradiance. Remarkably, during the development of leaf, the petiole angle gradually increased over
time. In addition, the midrib angle decreased with the increasing of irradiance during the diurnal courses in young leaves,
whereas, in mature leaves no distinct changes was observed. These data indicated that the leaf orientation might reduce the
irradiance reaching surface of young leaves under natural condition. Thus, we deduced that the co-operation of leaf angle,
photorespiration and thermal dissipation depending on xanthophyll cycle under natural condition might alleviate the
photoinhibion in young leaves.
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Table 1 Changes of chloroplast pigments during the development of soybean leaves
ULeaf types Chl a Chl b Car Chl (a+b) Chl a/Chl b Car/Chl (a+b)
33% A 63.57+8.4 28.86+1.8 19.92+1.1 92.43 2. 20 0.22
78% A 125.4049.6 40.9942.4 37.80+1.3 166. 39 3. 06 0.23
100% A 190.4949. 1 53.11£2.6 51.31£1.4 243. 60 3.59 0.21
* +SE Values are means+SE, n=5;1 33% A Just emerged leaves area;78% A Almost
fully expanded leaves area; 100% A Full expanded leaves area, the same below
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Fig. 3 Diurnal variation of the maximal efficiency of PS 1I
photochemistry (F./F, ) in different expanding soybean leaves
under natural condition

All measurements were made in attached leaves in situ

Changes of net photorespiration (P,) and the ratio of photorespiration to mass photosynthesis (P,/P,) during development of

Measurements were made under 1200 pmol/(m? « s) irradiance
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Fig. 4 Time course of maximal efficiency of PS II photochemistry

(F,/F,) in different expanding soybean leaves exposed to
1200pmol/ (m? « s) irradiance
All measurements were made in attached leaves placed in a

horizontal position vertically subjected to irradiance
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*

Table 2

expanding soybean leaves exposed to 1200 umol/(m? - s) irradiance

for different time

Changes of xanthophylls cycle pigments in different

Exposure time

Xanthophylls (mmol/mol) 0h 1h 2 h
33%A (V4+A+7Z)/Chl 164£7.6 172£8.2 169+7.9
(A+7)/Chl 0+2.7 87+4.6 9445.3
V+A+7Z)/Chl 138+£6.8 134=£09.1 141+£8.7

N (V+A+Z)/ + + +
(A+7)/Chl 0+3.1 61+4.3 68+4.5
V+A+7)/Chl 02+ 6. )5+6.5 06+6. :
100% A (V+A+7Z)/C 102£6.7 105%£6.5 106+6.3
(A+2)/Chl 0+2.9 49+3.7 51+3.9

o 1h
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All measurements were made in attached leaves placed in a horizontal
position vertically subjected to irradiance  * + SE Mean +

SE,n=4
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different expanding soybean leaves exposed to 1200 pmol/(m? « s)
irradiance

All measurements were made in attached leaves placed in a

horizontal position vertically subjected to irradiance
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horizontal position vertically subjected to irradiance
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