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Effects of CO, enrichment on growth, photosynthesis and activities of

antioxidant enzymes of two marine micro-green-algae
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Abstract : Atmospheric levels of CO, are expected to double during the 21% century. Many researches have been executed on the
ecological impacts of elevated atmospheric CO, concentration on algae. Marine microalgae is a primary producer in aquatic
ecosystems and half of the primary biomass production on our planet is based on aquatic ecosystems. In this experiment, the
effects of enriched CO, (5000u1/L.) on the growth. photosynthesis, activities of antioxidant enzymes of Chlorella sp. and
Platymonas subcordiformis were investigated using physiological and biochemical methods. The results showed that while the
growth rate of both Chlorella sp. and Platymonas subcordiformis was increased when culture medium was bubbled with
enriched CO,, there were differences in the degree of response between the two species of microalgae. Platymonas
subcordiformis was more sensitive than Chlorella sp. to CO, enrichment. CO, enrichment increased the dry weight and
photosynthetic rate of both species of microalgae while the soluble protein content decreased significantly. The chlorophylla
(Chla) and carotenoids (Car) content did not change significantly as compared to the controls. The malonyldialdehyde (MDA)
contents of Chlorella sp. and Platymonas subcordiformis grown under elevated CO, were lower than that of Chlorella sp. and
Platymonas subcordiformis grown under ambient CO,, which suggests that elevated CO, can ease the damage of membrane lipid

peroxidation produced under ambient CO, and enhance remaining membrane lipid stability. In addition to affecting
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photosynthetic activity, increased CO, levels can also play a crucial role in a marine microalgae’s response to oxidative stress.

Oxidative stress is potentially experienced by all aerobic life in adverse circumstances, resulting in the formation of toxic

oxygen species such as superoxide anion (O, "), hydroxyl radical (OH" ), hydrogen peroxide (H,O,) and singlet oxygen

('O,). In order to balance and control the risk of oxygen toxicity during the photosynthetic process, the plant cell has

developed an antioxidative defense system, which consists of antioxidants and several enzymes such as superoxide dismutase
(SOD), catalase (CAT), peroxidase (POD) and glutathione reductase (GR). Compared to ambient CO, (360pl/L), CO,
enrichment (5000p1/L) significantly reduced the activities of SOD, CAT and GR, while the POD activity did not changed

significantly. Elevated CO; can cause the necessity for antioxidant enzymes activities to be diminished, which in turn enhances

the protective ability of microalgae when faced with oxidative damage. Great differences exist between the activities of SOD,

CAT and GR in Chlorella sp. and Platymonas subcordiformis in both ambient CO; and elevated CO,.
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Table 2  Effects of CO, enrichment on dry weights, contents of Chla, Car and soluble protein and photosynthetic rates of Platymonas

subcordiformis and Chlorella sp.

a

CO,

( L) X 10 9pg/cell) (x10~° sell) (X1073mlO,/
(u1/1)CO, mg/ A0 pg/eelD ety (C10 The fee mh
. Dry weight Chlorophyll . ] . Soluble protein cell » min)
concentration . Carotenoid (Car) .
a (Chla) content Photosynthetic rate
360 36.65+1.76 41.3140.93 58.11£0. 48 43.24=+1.15 12.24+0.15
Platymonas subcordiformis 5000 41.0042.10%  40.84+1.09  56.7240.30  35.3541.34°  21.1340.18" °
360 51.134+1. 46 9.25+1.23 12.584+0.53 4.4140.15 2.424+0.13
Chlorella sp. 5000 57.25+2.34" 8.33+0.95 13.72+0. 82 4.1040.167 3.8640.17%*

*P<<0.05, " *P<<C0.01
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