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Abstract: Understanding how landscape pattern affects ecosystem processes is a central issue in landscape ecology. In this
study, we examined the effects of landscape heterogeneity on ecosystem evapotranspiration in the Changbai Mountain Nature
Reserve in northeastern China, using a process-based, spatially explicit model, EPPML (Ecosystem Productivity Process-
based Model at Landscape Scale). We developed EPPML to investigate the spatiotemporal patterns of carbon and water cycling
and ecosystem productivity, and the spatial pattern of annual mean evaporation is one of the model outputs. Data on
vegetation, soils, elevation., slope, and aspect were derived from digitalized maps. The spatial pattern of daily LAI at the
landscape scale was estimated from NDVI (Normalized Difference Vegetation Index), which was derived from TM remote
sensing imagery and field measurements and surveys. The daily meteorological variables were simulated based on related

topographic and climatologic principles and daily meteorological point data in the Changbai Mountain Forest Station for the year
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of 1995. The daily soil water content was an important output of the daily water cycle, and the daily spatial patterns of all the
variables of interest were stored in grid format in ArcInfo with a spatial resolution of 30m and Alberts projection. EPPML
integrated these local-scale outputs to simulate the daily spatial patterns of carbon and water cycling variables, including those
of evaporation and transpiration. Evaporation from canopy surface was mainly dependent on canopy interception, which was
related to vegetation type. cover, canopy structures LAI, and precipitation. Soil evaporation was simulated by Penman-
Monteith equation. Thus. using the GIS-based process model, we scaled up the biophysical variables from the local site to the
entire landscape using the scaling method, direct extrapolation. Finally we computed annual mean evaporation, total
precipitation, mean air temperature, total solar radiation, mean relative moisture, mean wind speed, and mean LAI in each
pixel, and analyzed how evaporation was related to environmental variables and LAI.

The estimated mean evaporation for all the vegetation types in the reserve was 0. 198m/a, ranging from 0. 0 to 0. 740m/a.
The spatial pattern of evaporation did not seem correlated with elevation. Evaporation rates were ranked from high to low as
follows: spruce-fir forests (0.276=+0.081m/a), Changbai larch forests, alpine grasses, mixed broad-leaved and Korean pine
forests, shrubs, alpine tundra, meadows, Betula ermanii forests, and broad-leaved forests (0.094 =+ 0.030m/a). The
estimated mean evapotranspiration for all the vegetation types in the reserve was 0.836m/a. ranging from 0.0 to 1.188m/a.
The spatial pattern of evapotranspiration obviously correlated with elevation. Among different vegetation types. the mixed
broad-leaved and Korean pine forests had the highest evapotranspiration (1. 057+0.173m/a).

The spatial patterns of environmental factors and LAI directly or indirectly influenced evaporation processes, and further
controlled the water balance at the landscape scale. The effects of spatial heterogeneity of environmental factors on evaporation
were much more complicated than on transpiration. Evaporation was limited mostly by relative moisture (R = 0.40) and
secondarily by air temperature, total radiation, precipitation, wind speed, and soil water content. Mean evaporation was
negatively correlated with mean LAI (R=—0.39), but they were not related as a simple inverse ratio. When LAI was low,
evaporation rapidly decreased with the increase of LAI; but when LAI further increased, evaporation varied little with LAI.
Different vegetation types responded to LAI and environmental factors quite differently.

Most of the simulated values fell within the same order of magnitude as field observations. This suggests that EPPML was
able to simulate, with reasonable accuracy. the annual mean evaporation and evapotranspiration of various vegetation types in
Changbai Mountain Nature Reserve. But further model validation and uncertainty analysis are needed future studies.

Key words:annual mean evaporation; evapotranspiration; spatial pattern; leaf area index (LAI); environmental factors
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e( %) 0.67 0. 67 5.0 18.5 15.0 3.8 12.6 1.0 0.67 [17]
0 0.9 0.9 0.7 0.5 0.6 0.7 0.5 9 0.9 [9]
1- 2 6 - )
R s [5. 33]
[34
1.2.7 LAI

20



2530 24
s , 3928 o s
153 s 118 s 1629 s 1298 s 730 o GRID s
N LAI s
2
2.1
I EPPML ( ) °
0.19840.093m/aC 4), 0.0~0.740m/a, 0.9~1.0m/a(20.8%) 0.10~0.3m/a(63.4%);

0.83640.258m/a(  4), 0.0~1.188m/a, 0.9~1.2m/a(50. 3%, ,
28.1% , [l 73.5%,
[1310
I, t . ,
(0.27640.081m/a), (0.0944-0.030m/a) ( 4),
, 0.123~1.188m/a . 1.057£0.173m/a; .
0.303~0.429m/a , 0.3414-0. 034m/a( 4),
Lo ,1962~1965
0. 602m/a, 84.1%, ; 0.194m/a,
0.022m/a, (40.052) ) .
[36]
,1988 0.557m/a, 76. 6% ; (5~9 ) 0. 504m,
77.5% (10~ 4 ) 0.052m, ,
. 0.76940.095m/a,
; (5~9 ) 0.722m, 78.2% (10~ 4 )
0. 046m,
s :Running
Coughlan'?  Jacksonville ., LAI  6m*/m* 0.175m/a; LAI ~ 9m?/m? , 0.178m/
a, BEPS 0.020~0. 8m/at*, ,EPPML
2.2
2.2.1 ; LAI (P<<0.005),
—0. 39, . LAI ; LAI (r<
0.005), C 3, LAI
, LAI 0.5m*/m? . LAI
) 0.14~0.15m/a, LAI . .
LAI . .
LAI , LAI . . LAI
LAI . , ) ; ,
. 30% , 59051, LAI
LAI , LAI .
LAI . LAI . . .
LAI ( LAI"), LAI LAI" .
LAI ; LAI LAI"

LAI



11 : 2531

LAI s ( ) 0.25
020 L % 10 BE Alpine tundra
’ 0'15 n=153
C 1D, LAI 5m?/m* 0:10
\ , 0.05
ol e \
0.35
’ 0.30 FE#H Betula ermanii forest
0.25 n=118
’ ’ ’ < on y=0.1749¢-0.185%
LAI = 0.10 R?=1{.4811
2 005
o E U 1 1 1 1
g 07 _
LAI g 0.6 ¥ =0.3515¢ 03083 I PPREHK Spruce-fir forest
; 0.5 R2=10.396 n=1629
¢4
1 2), LAI E 03
0. 5m’/m”* . LAI 0.5~1.5m*/m* . E
5 0 1 1 1] 1
’ : : W 0 BB 4042 3 A
LAI 1. 2m?/m?. 2. 5m?/m? 1. 5m?/m? % 04 } ¢+ Mixedbroad- leaved and Korean pine forest
) B o3 y=-0.552In(x) +0.2571 n=1298
s LAI 1.2~3.0m*/m*.2. 5~7.5m*/m* 1.5~ % g5 R? =0.8365
#
5.0m’/m* , o 0-5 : —
LAI 3. 5m*/m? i LAI 3.5 0.40 PRt #% Broad-leaved forest
2 2 n="730
~10m~ /m“ ) ’ H LAI 0.30 y= 0.1289x-0.2977
) N 0.20 2 = ().
10m?/m? , R =10.6464
0.10 -
| ’ ‘ %1 2 3 4 5 6 7 8 9 10 11 12
LAI , LAI LAI (m%*/m?)
(5. 606m*/m?*), ; LAI
(0. 645m*/m*), .
1
LAI
Fig.1 Relationship between annual mean evaporation and leaf area
’ ’ index for main vegetation types in Changbai Mountain
(0. 23m/a), (0.276m/a);
(0. 08m/a), (0. 094m/a)( 2),
2 LAI

Table 2 Variations of annual mean evaporation with leaf area index for main vegetation types in Changbai Mountain

LAI
LAI LAI
. Asymptotic value of annual LAl while annual mean LAI while annual mean Annual mean
Vegetation type . R 5 . . . .
mean evaporation with LAI evaporation reaching evaporation starting to evaporation
(m/a) asymptote (m?/m?) increase (m?/m?) (m/a)
Alpine tundra 0.15 0.5 — 0.146
Betula ermanii forests 0.12 1.2 — 0.132
Broad-leaved forests 0.08 1.5 5. 0 0. 094
Spruce-fir forests 0.23 2.5 0.276
Mixed broad- leaved
. 0.13 3.5 — 0.172
and Korean pine forests
2.2.2 s o
s 3 s 0.20;
A ’ A ’
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Table 3 Relationship between annual mean evaporation for main vegetation types and some factors in Changbai Mountain

LAI
Annual total Annual
X Annual total nnuat tota nnua. Annual mean Annual mean Annual mean Annual mean
Vegetation type L solar mean air . . .
precipitation L relative wind speed soil water LAI
radiation  temperature )
moisture content
Alpine tundra —0.33** " 0.61"** 0.30" ** —0.34*** —0.33""" 0.33* "~ 0.029
Betula ermanii forests —0.20" —0.16" 0.20* —0. 045 —0.20" 0.15" —0.53" "~
Spruce-fir forests 0.047 —0.012 —0.051 0.051 0. 046 —0.33" " " —0.27" "
Mixed 0.41° %% —0.40%** —0.41° 0.41% " 0.41°°* 0.36° 7% —0.73° %"
broad-leaved and Korean pine forests ’ ' : ’ ’ ’ T
Broad-leaved forests 0.052 —0. 041 —0. 051 0. 055 0.053 0.47*** —0.48" ¥
Total 0.26"** —0.29*** —0.30""" 0.40* = * 0.23""* —0.22"" —0.39" "~
* P<C0.05; * % P<C0.01; * % % P<C0.005
s LAI o s
, C 4, LAI o
LAI 7 4.691m?*/m*, . .
C 4, LAI N N
s s 86% .7 LAI  0.830m?*/m?,
o C 4, (R=—0.75)
(R= —0.74), s o
s B s s 0.5~0.7, 57
LAI (4.153m*/m*), s o 7 LAI , 7.2m*/m?
, o LAI
3
[@D) o
EPPML s o
(2) s GIS GRID o GIS
(3 0.198+0.093m/a, o
(0.27640.081m/a), . N N N
. . (0.094=+0.030m/a). 0.83640.258m/a,
o : (1. 057=+0.173m/a) N
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Table 4 Environmental conditions, LAI, annual mean evaporation and evapotranspiration for different vegetation belts in Changbai Mountain

LAI
Annual  Annual total ~ Annual Annual Annual mean
. . Annual mean Annual mean  Annual Annual mean
Vegetation total solar mean air . mean . evapora-
. .. relative . soil water  mean LAI . evapotran-
type precipitation  radiation  temperature . wind speed tion L.
N (M]/m?) ) moisture (m/s) content (m?/m?) (m/a) spiration
mm m? : m/s m/a
% (m) (m/yr)
1641. 883+ 4718.807F —5.857% 69. 24+ 6.157+ 0.0263+t 0.102=+ 0.247+ 0.341+
Alpine grasses 92.492 249. 489 1. 266 1.19 0.619 0. 0008 0.122 0. 007 0. 034
1550. 086+ 4586.396+  —4.529+ 68. 43+ 5.550+ 0.0266+ 0. 645+ 0. 146+ 0.504+
Alpine tundra 93.424 303. 889 1.374 1.10 0.615 0. 0008 0.279 0.012 0. 066
Betula 1354. 419+ 4634.140+  —2.062+ 66. 87+ 4.347+ 0.0274+ 1.541+ 0.132+ 0.593+
ermanii forests 80. 694 309. 273 0.901 1.72 0.461 0. 0021 0. 660 0.031 0.108
Spruce-fir 1212. 614+ 4797.703+ —0.489+ 64. 08+ 3.561+ 0.0197+ 2.497+ 0.276+ 0.822+
forests 82. 609 246. 451 0.968 2.49 0. 440 0.0102 1.783 0. 081 0.271
Mixed
1039. 1014+ 5127. 289+ 2.071+ 57.03+ 2. 687+ 0.0164+ 5. 606+ 0.172+ 1. 057+
broad-leaved and B
. 39. 260 80. 615 0.733 2. 04 0.183 0.0079 2.631 0. 052 0.173
Korean pine forests
Broad- 1091.493+ 5027.985+ 1.221+ 59. 40+ 2. 944+ 0.0259+ 3,467+ 0.094+ 0.769+
leaved forests 74.516 200. 487 1.124 3.10 0. 375 0.0038 1. 329 0. 030 0.095

. 1228. 0474 4802.156 —0.606+ 64. 05+ 3.653+ 0.0188+ 2.943+ 0. 2664+ 0.877+
Changbai Larch

111. 288 227.774 1. 370 3. 26 0.598 0. 0075 1. 981 0.075 0. 201
forests
Mead 1338.550+ 4736.660+  —1.897+ 61.89+ 4.260+ 0.0246+ 1.561+ 0.136=+ 0.716+
ea WS
° 94. 614 228. 470 1.144 0.42 0.554 0. 0008 0.542 0.017 0. 066
Shrubs 1240. 8854+ 4802. 467+ —0.759+ 64. 60+ 3.717+ 0.0260+ 0. 820+ 0.151=+ 0.563=+
rubs 96. 305 262.205 1.171 2.91 0.518 0. 0007 0. 201 0. 007 0.033
Total 1174. 925+ 4903. 493+ 0.139-+ 61. 95+ 3.388+ 0.0208+ 3.227+ 0.198+ 0. 836+
a
© 143. 378 268. 600 1. 900 4.35 0.779 0. 0086 2.438 0.093 0. 258
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