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Short-term responses of photosynthesis to elevated CO, in leaves of canopy
species Castanopsis patelliformis in tropical mountain rain forest in

Jianfengling, Hainan Island

CHEN De-Xiang, LI Yi-De", LUO Tu-Shou, CHEN Bu-Feng, LIN Ming-Xian  (Research Institute of Tropical
Forestry, CAF, Guangzhou 510520,China). Acta Ecologica Sinica,2004,24(8):1622~1628.

Abstract: The responses of tropical plants to CO, enrichment are interest in view of the global increase in CO, levels. In this
research we measure and analyze the short-term responses of photosynthesis diurnal courses and photosynthetic light response
in sun leaves of the canopy species Castanopsis patelli formis.

The measurements were made with Li-6400 (Li-cor, Inc., USA) portable photosynthesis system, where CO, was
controlled at ambient (350pmol/mol) and elevated (700pmol/mol) concentrations respectively, during a continuous 3-day
period in April, 2000. This is the dry season in the tropical mountain rain forest of Jianfengling, Hainan Island.

An empirical model of photosynthetic light response was then constructed to predict the daytime carbon gain by fitting
measured data into a non-rectangular hyperbola nonlinear model with the following parameters: the light-saturated
photosynthetic rate (Asat), the light-saturated constant (K, equal to the PPFD, which is required to produce one-half of the
light-saturated photosynthetic rate) , apparent quantum yield (¢, the initial slope of the curve) and dark respiration rate (Rd).

The results suggest that plants photosynthetic ability can be enhanced as the short-term responses to CO, enrichment,
with elevated CO, stimulating an apparent quantum yield increase of 61% in our analysis. Elevated CO, also increased the light-
saturated photosynthetic rate by 65% and the daily average net photosynthetic rate by 75%. Under elevated CO,, the light
saturation point increased by 100pumol/(m?* « s) and the light compensation point reduced by 10~20umol/(m* + s). Water use
per unit carbon fixation was decreased by 42% ~69% , while stomatal conductance was reduced by 28% ~73%.

A complete understanding of the effects of increases in atmospheric CO, concentration on forest ecosystems in real
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environments is dependent on the comprehension of the complex canopy light environment, as well as the interactions of light
with CO,.
Key words: elevated CO,; light response of photosynthesis; Castanopsis patelliformis; tropical mountain rain forest; Hainan

island; Jianfengling
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