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Preliminary studies on the rule of copepod diapause

JIANG Xiao-Dong, WANG Gui-Zhong, L1 Shao-Jing, KONG Xiang-Hui, GUANG Wei-Bing  (Department of
Oceanography, Institute of Subtropical Oceanography . Xiamen University, Xiamen 361005). Acta Ecologica Sinica,2004,24(3):517~523.
Abstract: Many copepods have integrated a state of diapause in their life history to avoid the critical conditions. It has been
showed that the diapause trait is by no means evenly distributed within copepods . such as different diapausing forms (Diapause
occurs in eggs. copepidites or adults. ) and different diapausing locations (in water column or in sediment). In this paper we
attempt to investigate the distribution of diapause among copepods based on the published data of 102 species from 3 orders of
pelagic copepods. The index of diapause and the index of migration are adopted in order to mathematically analyze. The index
of diapause is described as follow: (1)lowest diapause,species diapausing with the form of copepidites or adults in the water
column; (2)moderate diapause,species diapausing with the form of copepidites or adults in the sediment; (3)highest diapause,
species diapausing with the form of eggs in the sediment. The index of migration is ranked as follow: (1)lowest migration,
pond and lake dwelling species; (2)moderate migration,species living in the coastal areas; (3)highest migration,species living
in the open sea.

The relationship between the index of diapause and the index of migration is highly negatively significant (R*=0. 3932,
P<0.00001, n=102). It suggests that there is a highly negative relationship and a trade-off between the diapause ability and
the migratory ability among copepods. The relationship between the index of migration and the body length is highly positively
significant (R*=0.3220, P<<0.00001, n=102). And the index of diapause negatively covaries with the body length (R*=
0.1871, P<C0.00001, n=102). The results show that strong diapause and weak migration are more common among small
copepods. whereas large species have weak diapause and strong migration. The index of diapause of freshwater copepods is
higher 25.3% than that of marine copepods. It suggests that species with prolonged diapause tend to be found in inland water.

Two possible explanations for those uneven distribution of diapause are discussed. The one is microevoluntionary. The
patterns reflect selection pressure exerted on copepods by the environment in which they live: diapause is favored in some
habitats and not in others. Another explanation is macroevoluntionary. The patterns are the result of phylogenetic history :if
the ancestors of some taxa did not evolve diapause. their descendants may also lack the trait whatever the selection pressure
may have been.
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Table 1 List of the 102 copepods species and their body length, index of migration, index of diapause and habits
(cm)
Taxa Length  The index of migration  The indexof diapause Habit Reference
Cyclops scutifer 1.19 1.5 2 freshwater [11]
C. bicolor 1.6 1.5 2 freshwater [3]
C. abyssorum 1.8 1 2 freshwater [12]
C. bohater 2.03 1 2 freshwater [12]
C. abyssorum tatricus 1.7 1.5 2 freshwater [13]
C. vicinus vicinus 2. 04 1.5 2 freshwater [3]
C. strenuus strenuus 1.69 1.5 2 freshwater [14]
C. lacustris 1.67 1.5 2 freshwater [15]
C. kolensis 1.3 1.5 2 freshwater [15]
Diacylops thomasi 1.13 1 2 freshwater [3]
Mesocyclops leuckarti 0. 88 1.5 2 freshwater [16]
T hermocyclops oithonoides 0.8 1.5 2 freshwater [15]
T. crassus 0.75 1.5 2 freshwater [3]
Acanthocyclops robustus 1.2 1 2 freshwater [17]
Pontella mediterranea 2.69 2 3 marine [18]
P. meadi 2.73 2 3 marine [1]
Anomalocera patersoni 2.94 2 3 marine [3]
Calanopia thompsoni 1.7 2 3 marine [19]
C. americana 1.83 2 3 marine [20]
Labidocera aestiva 1.94 2 3 marine [3]
L. wollastoni 2.32 2 3 marine [21]
L. bipinnata 2.09 2 3 marine [22]
L. trispinosa 2.33 2 3 marine [22]
L. scotti 2.2 2 3 marine [3]
Epilabidocera amphritrites 2.5 2 3 marine [20]
E. longipedata 2. 45 2 3 marine [3]
Temora longicornis 1.21 2 3 marine [21]
Eurytemora affinis 1.33 2 3 marine [3]
E. pacifica 0. 85 2 3 marine [22]
E. velox 1.63 2 3 marine [3]
Centropages ponticus 1.31 2 3 marine [3]
C. hamatus 1.12 2 3 marine [21]
C. abdominalis 1.5 2 3 marine [19]
C. yamadai 1.42 2 3 marine [19]
C. velificatus 1. 37 2 3 marine [23]
Sinocalanus tenellus 1.6 2 3 marine [22]
Acartia clausi 1. 08 2 3 marine [19]
A. tonsa 1.23 2 3 marine [24]
A. hudsonica 1. 39 2 3 marine [25]
A. josephinae 1. 37 2 3 marine [26]
A. californiensis 1. 26 2 3 marine [3]
A. erythraea 1.43 2 3 marine [19]
A. pulmosa 1. 09 2 3 marine [19]
A. pacifica 1.19 2 3 marine [27]
A. latisetosa 1.4 2 3 marine [26]
A. steueri 1. 32 2 3 marine [28]
A. bifilosa 1.1 2 3 marine [29]
A. tseunsis 1. 33 2 3 marine [22]
A. longiremis 1 2 3 marine [20]
Tortanus forcipatus 1.2 2 3 marine [19]
T. discaudatus 2.5 2 3 marine [20]
Calanus finmarchicus 3.7 3 1 marine [30]
C. helgolandicus 2.75 3 1 marine [3]
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(cm)
Taxa Length  The index of migration  The indexof diapause Habit Reference
C. hyperboreus 2.75 3 1 marine [31]
C. glacialis 2.9 3 1 marine [30]
C. pacificus 2.7 3 1 marine [3]
C. pacificus californicus 3.17 3 1 marine [32]
C. australis 3.5 3 1 marine [3]
C. propinquus 3.1 3 1 marine [33]
C. marshallae 3.2 3 1 marine [3]
Calanoides acutus 2.5 3 1 marine [3]
C. carinatus 2.6 3 1 marine [31]
Pseudocanalus acuspes 1 3 1 marine [30]
P.elongatus 1.4 3 1 marine [34]
P. minutus 1.5 3 1 marine [35]
Neocalanus plumchrus 3.12 3 1 marine [30]
N. plumchrus 2.05 3 1 marine [36]
N. flemingeri 3.25 3 1 marine [36]
N. cristatus 3.16 3 1 marine [37]
Metridia longa 4 3 1 marine [30]
M. lucens 2.25 3 1 marine [3]
A. longiremis 1.2 3 1 marine [35]
Onychodiaptomus sanguineus 0.53 1 3 freshwater [38]
O. bergei 0.61 1 3 freshwater [39]
Leptodiaptomus minutus 0. 45 1 3 freshwater [40]
Acanthodiaptomus denticornis 1.6 1 3 freshwater [41]
Aglaodiaptomus leptopus 1. 68 1 3 freshwater [42]
A. clavipes 1.56 1 3 freshwater [43]
Diaptomus sicloides 2. 45 1 3 freshwater [44]
D. cyaneus intermedius 2. 65 1 3 freshwater [3]
Hemidiaptomus ingens provincae 4.5 1 3 freshwater [3]
Epischura nordeskiolki 0.91 1 3 freshwater [45]
Thermodiaptomus galebi 1.21 1 3 freshwater [46]
Arctodiaptomus bacillifer 1.48 1 3 freshwater [3]
A. wierzejskii 1.51 1 3 freshwater [3]
Sinocalanus tenellus 1.23 1 3 freshwater [47]
Mizxodiaptomus kupelwieseri 1.92 1 3 freshwater [3]
M. laciniatus 1.3 1 3 freshwater [3]
Canthocampus staphylinus 0.75 1 2.5 freshwater [3]
C. staphlinoides 0.76 1 2.5 freshwater [3]
C. microstaphylinus 0.67 1 2.5 freshwater [3]
C. robertcokeri 0.71 1 2.5 freshwater [3]
Attheyella northumbrica 0.71 1 2.5 freshwater [3]
A. wulmeri 0.75 1 2.5 freshwater [3]
A. americana 0. 68 1 2.5 freshwater [3]
Mosochra sp. 0.76 1 2.5 freshwater [3]
Cletocamptus retrogressus 0.71 1 2 freshwater [3]
Heteropsyllus nunni 0.56 2 2.5 marine [3]
H. pseudonunni 0.63 2 2.5 marine [3]
Tigriopus fulvus 0.75 1 2 marine [48]
T'. brevicornis 1.05 1 2 marine [49]
T. japonicus 0.95 1 2 marine [19]
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