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Abstract: We studied thermal tolerance, body temperature, and thermal dependence of locomotor

performance of hatchling red-eared slider turtles (Trachemys scripta elegans). Two thermal environments,
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one with and the other without thermal gradients. were designed to study diel variation in body
temperature (7'h). Turtles were obtained from a pet shop in Hangzhou, with body mass, carapace length
and carapace width being 9.5 + 0.2 (7.7~11.1) g, 35.6 4+ 0.2 (32.7~37.4) mm and 35.3 4+ 0.2
(33.6 ~ 36.9) mm, respectively. Turtles were marked individually by toe-clipping for future
identification, and then were housed, 7~8 of them, in individual 50 X 30 X 30 cm® (length X width X
height) glass cages, of which the bottom was filled with an oblique layer of sand (the maximum depth =
5 cm), water (the average depth = 2.5 cm) and debris to mimic natural conditions to some extent. The
thermal gradients ranging from 18 °C to 60 °C were established by suspending two 250 W light bulbs at one
end and approximately 20 cm above the bottom of the cage. Turtles in the environments either with or
without thermal gradients were exposed to a natural light cycle, but those in the thermal gradients could
regulate body temperatures within their voluntary range when the light bulbs were turned on.

Body (cloacal temperature), water (7w, where turtles were measured for 76) and air (Ta, 1 cm
above the turtle measured for Th) temperatures were taken to nearest 0.1 °C, using a RC (95 electronic
thermometer (Shanghai Jinghua Instruments, China), at intervals of 4 h in two consecutive days. The
mean body temperature of active turtles in the thermal gradients was considered as the selected (or
preferred ) body temperature (7'sel) at the time. The upper (CT'Max, critical thermal maximum) and
lower (CTMin, critical thermal minimum) limits of thermal tolerance were determined in a LRH-250G
incubator (Guangdong Medical Instruments, China), where turtles were cooled or heated from 28 °C at
the rate 0.1 °C per min. During the experiments, we observed the behavior of the experimental turtles
through a window on the door of the incubator. Body temperatures associated with a transient loss of
righting response (the animals did not respond to intense mechanical stimulation and could not turn back
when being turned over) at lower and upper thermal limits were used as endpoints for C7'Min and
CTMax.

Locomotor performance was tested at 8 constant body temperatures (18, 22, 25, 30, 33, 36, 39 and
41 C). the sequence being randomized. Prior to each trial, turtles were placed in an incubator for a
minimum of 4 h. thereby controlling their body temperatures at the expected level. Locomotor
performance was assessed by chasing the turtles down a 200 X 10 X 15 ecm*® racetrack with one side
transparent, which allow lateral filmation with a digital video camera (Panasonic NV-DS77). It was
always the same person (the second author) who chased the turtles, thereby standardizing the stimulus.
The video tapes were later examined using the MGI VideoWave 11l software for sprint speed in the fastest
25 cm interval, number of stops in the racetrack and the maximum length of continuous locomotion.

CTMax and CTMin were 41.9C and 1.8 C, respectively. Diel variation in body, water and air
temperatures were found in the environments both with and without thermal gradients. In the environment
with thermal gradients, the daily means of body and water temperatures were nearly the same, both being
greater than the daily mean air temperature. In the environment without thermal gradients, body, water
and air temperatures did not differ from each other in the daily mean value. The existence of thermal
gradients is a necessary for turtles to regulate body temperatures within their voluntary range. T'sel varied
from 26.6 C to 30.4 C. and it was lower during the period of 00:00 ~ 10:00 and higher at the other
time phase in a 24 h cycle. Body temperatures were positively correlated with both water and air
temperatures. An ANCOVA showed that T'a-specific body temperatures were on average 2.0 C. and T'w
(specific body temperatures 1.0 C, higher in turtles in the environment with thermal gradients than in
those in the environment without thermal gradients. Locomotor performance was highly dependent on

body temperature. Sprint speed increased with increase in body temperature within the range from 18 C to
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39 C, and decreased at the body temperature of 41 C. The maximum length of continuous locomotion

was greater in turtles at the body temperatures of 30~39 C than in those at the body temperatures lower

or higher than this range. Overall, turtles at relatively high body temperatures had better locomotor

performance than did those at low or extremely high body temperatures. A partial correlation analysis

showed that sprint speed was positively correlated with both maximum length of continuous locomotion

and number of stops in the racetrack.

Key words: red-eared slider turtle (Trachemys scripta elegans); hatchling; body temperature; selected

body temperature; thermal tolerance; thermoregulation; locomotor performance
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