23 4 Vol. 23,No. 4

2003 4 ACTA ECOLOGICA SINICA Apr. ,2003
, *
( N 310029)
o 8§~32C

, 30~32C o o
y - - ., Logistic s

“ ”O R N ,LOgiStiC N

- - s , Logistic - -

Development rate of Plutella xylostella L. ( Lepidoptera:
Plutellidae) under constant and variable temperatures

CHEN Fei‘ZhOUa LIU ShU—Shengx (Institute of Applied Entomology. Zhejiang University, Hangzhou
310029, China). Acta Ecologica Sinica,2003,23(4) ;. 688~ 694.

Abstract: The diamondback moth, Plutella xylostella 1.. (Lepidoptera: Plutellidae) is a major pest of
cruciferous crops worldwide. In the past, many studies have been conducted to provide valuable
information on the temperature-dependant development of P. xylostella. However, scrutiny of the
relevant literature indicated that more detailed knowledge of development and survival of P. xylostella in
relation to temperature seemed desirable. especially at low and high temperatures. Such detailed
information will be useful particularly for monitoring and population studies of P. xylostella in temperate
and cool temperate regions, where this insect has become a more important pest in recent years. The
purpose of this study was to examine the development rate and survival of P. xylostella at controlled
temperatures over a wide temperature range, and to derive mathematic functions that can be tested for
simulating the development of P. xylostella populations at natural temperature conditions.

Survival and development time from egg to adult emergence of P. axylostella were determined at 19
constant temperatures from 4 ~ 40C, and were also measured at four natural temperature regimes
including temperatures from —1.8 to 31.4 C. Plutella xylostella could complete its development from egg
to adult emergence within the range from 8 to 32 C. The survival rates of the entire immature stage at
constant temperatures were above 60% between 12~28 C, but decreased rapidly both above and below
this temperature range, dropping to zero at 6 and 34 C. The temperature range for complete development

varied between stages and also between larval instars, with larvae having the widest tolerance range.
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followed by pupae and eggs. When test insects were reared at a favorable temperature to a given stage and
then moved to a low or high temperature to observe the development and survival of individual stages or
instars at these unfavorable conditions, the low and upper temperature limits for complete development
were <4 and 40 C for third and fourth instars, <4 and 38 C for second instar, <4 and 36 C for first
instar, 8 and 36 C for pupa, and 8 and 34 C for egg, respectively. The relationship between the survival
rate of the pre-imaginal stage and temperature was described well by a quadratic equation.

The mean duration of development from egg to adult emergence decreased with an increase of
temperature, varying from 119. 0 days at 8 C to 11. 2 days at 32 C, with the shortest development times at
30 C and 32 C. Three mathematical models, i.e. , the linear (degree-day) model., the Logistic equation
and the Wang-Lan-Ding model, were used to describe the relationships between development rate and
temperature at constant conditions. A BASIC program, based on the Marquardt techniques, was used to
fit the models to various data sets. The results showed that the Wang-Lan-Ding model offered the best
description; the Logistic equation gave good description at mid and low temperatures, while the linear
model gave good description only at mid temperatures.

In order to simulate population development at natural temperatures, the inherent variability of
development rate between individuals must be considered. The distributions of development times of P.
aylostella at constant temperatures were found to follow the “same shape property” and were simulated
well by a Weibull function.

The linear, the Logistic and the Wang-Lan-Ding models were then each coupled with the Weibull
function to simulate the process of adult emergence of each cohort at a given natural temperature regimes.
Temperature data were used as inputs to each of the rate models to calculate the amount of development at
each time interval, which was then accumulated by the method of rate summation to estimate the
proportion of mean development at a given point of time. The proportion of mean development was then
used as input to the Weibull function to estimate the proportion of adult emergence. To compare the
differences between observed and simulated events of adult emergence. the observed number of days from
birth to 15%, 50% and 85% of adult emergence in each trial were compared with those predicted by each
of the three models. The comparisons showed that the Logistic model and the Wang-Lan-Ding model
simulated the population development well at all four natural temperature regimes. the maximum
deviations being within the range of — 1.7 to + 1.1 days. However, the linear model gave accurate
simulations only at mid temperature range, but produced falsely longer durations of development when the
amount of temperatures below 10 C became substantial. These results showed that development rate
models derived from constant temperature data, once appropriately chosen, could be used effectively to
predict population development of P. aylostella in the field. This study has provided the development rate
models as well as models of development time distribution that may be used to predict the population

development of P. xylostella at a wide range of natural temperature conditions.
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Table 1 Natural temperature regimes during the experiment
Temperature( C)
Trial  Start and end dates Number of = Number of
Mean Range ] eggs at start adults emerged
Mean min.  Mean max.
S1  1999-01-05~1999-04-11 9.6 —1.8~24.1 6.5 12.8 150 64
S2 1999-02-10~1999-04-23 12.0 6.9~24.1 8.9 15.2 300 231
S3 1999-05-11~1999-06-01 22.0 15.6~29.2 19.4 24.9 200 117
S4 1999-06-05~1999-06-25 21.9 18.1~31.4 19. 9 24.1 185 130
1. 4 .Logistic - sl
s “ »Ls, 10] B
(x), F
(x)s Weibull (F(z)=1—exp{—Lte"771"}) R
o, ) [z 18]
’ Zs x s
F(x), . 4h, Basic Hz1sl)
1596.50% 85 3 ;
[II]0
2
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8§~32C , 34C 1 o
34C 28 C
s 8§C 20C
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Table 2 Development time (mean=+SE) of Plutella xylostella at constant temperature
) 1 2 2 3 3 4 4 (G (G o
Temperature Egg instar instar instar instar Prepupa Pupa($) Pupa(%) Total
4 47.940.70 34.640.56 41.841.52 51.743.37 12.040.48
6 D@ 29.340.37 31.840.36 24.8+0.27 30.0+1.27 9.840.43 ID ID
8 20.840.08 13.0£0.06 14.440.11 12.940.09 15.240.13 5.140.12 35.340.37 39.84+0.74 119.0 £1.07
10 15.44+0.08 10.8+0.11 11.44+0.14 9.6+0.11 11.0+0.18 4.140.14 24.940.24 27.8+0.21 88.2 + 0.82
12 12.8%£0.03 8.2+£0.04 7.94+0.13 6.740.11 8.0£0.12 3.2+0.06 18.040.14 20.9£0.10 66.3 £ 0.58
14 8.440.05 4.64+0.15 5.240.12 4.64+0.06 5.440.05 1.940.08 10.840.12 12.340.08 41.6 + 0.30
16 6.440.04 4.340.07  4.14+0.05 3.3+£0.06 1.4+0.05 1.5+£0.04 9.1£0.09 10.7+0.09 33.8 £ 0.32
18 4.740.10 3.6+£0.11  3.840.09 2.8+0.06 3.7£0.04 1.24+0.05 6.7£0.06 7.340.08 26.7 £0.26
20 4.040. 05 2.540.10  3.3%£0.12  2.3£0.19  3.2£0.15 0.96%0.03 5.3£0.06 6.1£0.07 21.9 £0.23
22 3.540.07 2.140.11 2.8+0.12  1.940.12  2.540.16 0.79+0.10 4.54+0.17 5.1£0.16 18.4 £ 0.21
24 3.04£0.09 2.040.05 2.240.08 1.54+0.04 2.040.04 0.6840.16 3.840.23 4.34+0.33 15.3 + 0.22
28 2.440.07 1.6£0.17 1.4£0.10 1.3+0.11 1.7+0.28 0.53+0.18 3.1+0.24 3.3+0.28 12.1 £ 0.21
30 2.340.05 1.5+0.03  1.34£0.04 1.1£0.04 1.54+0.04 0.62£0.02 2.64+0.13 3.0£0.03 11.1 £ 0.22
32 2.240.08 1.5+0.16 1.0£0.15 1.3£0.16 1.7£0.15 0.60£0.17 2.9£0.16 2.8+0.16 11.1 £ 0.20
34 2.5+0.06 1.640.02 1.240.02 1.64+0.07 1.840.01 0.57£0.09 2.9£0.01 3.240.01
36 1D 1.64+0.17  1.440.04 1.340.13  2.240.04 0.51£0.10 4.040.00 4.240.17
38 1D 1.240.09  2.0£0.06 2.940.10 1D 1D 1D
40 1D 2.340.11 3.340.06
42 ID 1D
[©) s In the calculation of total development time, the mean
time of both female and male pupae was used for that of the pupal stage; @ Incomplete development
3 %)
Table 3 Percent survival of various stages and instars of Plutella xylostella at constant temperature
() 1 1 2 ond 3 3rd 4 4th
Temperature Egg instar instar instar instar Prepupa Pupa Egg to adult
6 0 0
8 98.9 73.5 92.3 76.7 TR 7 69.7 78.3 20.1
10 96. 9 77.0 82.5 90. 0 75.0 68.5 67.6 19. 2
12 95. 8 79.8 96. 7 93.2 96. 3 96. 2 98.7 63.0
14 100.0 93.3 97. 6 97. 6 100.0 100.0 90. 0 80. 0
16 100. 0 80. 0 98.3 94.9 100. 0 100. 0 94. 6 70.7
18 100. 0 100. 0 91.5 98. 2 88.7 97.9 91.3 71.2
20 98. 6 97.1 98.5 100. 0 100. 0 98.5 81.8 76.1
22 93.9 93.6 100. 0 93.1 92.6 100. 0 92.0 69.7
24 88.1 97.3 100. 0 94. 4 100. 0 100. 0 94. 1 76.2
28 97.4 94. 6 100. 0 97.1 91.2 100. 0 90. 3 73.7
30 94. 3 76.0 100. 0 86. 8 100. 0 90.9 90. 0 50.9
32 93.0 88.7 91.5 95.4 90. 2 100. 0 73.0 47. 4
34 57.6 0.0 0.0
2.3
2 s \Logistic - . 3
. bz 1l 10~30C ,Logistic
4~32C, - - 4~40C, 4, 1.

Logistic - - »  Logistic
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4
Table 4 Parameter values of three models describing the relationships between temperature and development rate of

Plutella xylostella

1 1 2 2 3 3 4 4t ) )
Model Parameters Egg instar instar instar instar Pupa($) Pupa(d) Total
t+SE 7.3+0.14 7.34+0.41 7.240.82 7.640.24 7.0£0.41 7.8£0.24 7.94+0.28 7.4+0.20
Degree- kESE 52.140.89 33.7£1.61 36.1£3.34 27.9£0.81 37.4+1.67 64.84+2.0 72.74+2.69 268.246.48
day R? 0.9778 0. 9804 0. 9506 0.9748 0. 9802 0.9867 0.9823 0. 9859
K 0. 6082 0. 4877 0.9159 1.0389 0. 4096 0. 4083 0. 3959 0.1079
Logistic model a 3. 8161 4.2279 4. 2865 4.1488 4. 2616 4. 2366 4.274 3.9548
b 0.1685 0.2917 0.1975 0.1925 0. 2966 0. 2039 0.1971 0. 1839
R? 0. 9965 0.9915 0.9616 0.998 0. 9966 0.9973 0. 9965 0. 9968
- - H 0.6104 0.9314 1.2382 1. 2136 0.7856 0.3783 0. 3802 0.1215
Wang-Lan-Ding T 3.26 1.52 0.97 0.22 —0.12 1.25 4.22 2.58
model T  34.78 37.94 38.78 11. 6 42.21 36. 42 36.5 35.49
To  22.69 20. 48 22.12 21.39 19. 56 20. 58 21.34 22.79
r 0.1683 0.2113 0.216 0.1919 0.1998 0. 205 0. 1987 0.1742
) 0. 55 1.83 1.29 3.78 4.82 0.4 0. 46 1. 62
R? 0.9943 0. 9897 0. 9844 0.9966 0.9966 0.9974 0.9965 0. 9961
2.4
( ) s
e, 8~22C .
, s Weibull
F(x) =1 —exp(— [(&x —0.78)/0.23]"™) R = 0.9849
\x LJF(x) C 2.
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