

水对稻田蜘蛛捕食功能的影响

杨国庆¹，吴进才¹，王洪全²，姜永厚¹，邱慧敏¹

(1. 扬州大学农学院植保系，扬州 225009；2. 湖南师范大学生命科学院，长沙 410081)

摘要：采用脉冲抽样法调查，将两年的田间飞虱每日被捕食量与捕食性天敌密度的资料分为有水和无水两组，分析了两种条件下飞虱被捕食量、被捕食百分率与蜘蛛密度、飞虱平均拥挤度的关系，并在室内模拟有水和无水分别进行了拟水狼蛛(*Pirata subpiraticus*)和食虫瘤胸蛛(*Oedothorax insecticeps*)对褐飞虱(*Nilaparvata lugens* Stål)的捕食功能反应。结果表明：飞虱被捕食百分率随飞虱平均拥挤度增加而呈递减趋势；在同一飞虱平均拥挤度时，有水时飞虱被捕食量大于无水；有水时飞虱被捕食量与水狼蛛密度呈二次抛物线型关系，水狼蛛密度在每穴 1.4 头时，飞虱被捕食量最大；无水时飞虱被捕食量与水狼蛛密度呈线型关系；两种条件下飞虱被捕食量与微蛛密度的关系不明显。室内功能反应同样证实了水狼蛛在有水时的捕食量大于无水，前者比后者高 1.5 倍，而食虫瘤胸蛛无明显差异。

关键词：稻田；水；捕食者；捕食量

The effects of water on predacious function of paddy field spiders

YANG Guo-Qing¹, WU Jin-Cai¹, WANG Hong-Quan², JIANG Yong-Hou¹, QIU Hui-Min¹ (1. Department of Plant Protection, Agricultural College, Yangzhou University, Yangzhou 225009, China; 2. College of Life Science, Hunan Normal University, Changsha 410081, China). *Acta Ecologica Sinica*, 2003, 23(4): 681~687.

Abstract: The daily predation of spiders to planthopper in paddy field was estimated during 2000-01 using the method called pulse sampling (i. e. calculating the number of planthopper preyed during time t to $t + \Delta t$, based on the difference between the planthopper number at time t and $t + \Delta t$). Planthopper numbers were recorded by killing with the insecticide (dichlorvos), and investigation was conducted successively for several days. In order to estimate daily predation, several supplementary experiments were also carried out. Daily predation was estimated by using the following formula:

$$Y_t = (N_t + H_t + M_t) - (N_{t+1} + P_t + E_t + D_t)$$

Where Y_t was the planthopper predated during time t to $t + \Delta t$, N_t and N_{t+1} were the planthopper numbers at time t and $t + \Delta t$, respectively; H_t was the number of planthopper nymph hatched during time t to $t + \Delta t$; M_t was the number of planthoppers immigrated during time t to $t + \Delta t$; P_t was the number of the planthopper died due to parasitism during time t to $t + \Delta t$; E_t and D_t were the number of planthoppers emigrated and natural death during time t to $t + \Delta t$, respectively. The relationships of between number of planthopper preyed (NPP), percentage of planthopper preyed (PPP), and with spider density were

基金项目：国家自然科学基金重点资助项目(39830040)

收稿日期：2001-11-08；修订日期：2002-06-20

作者简介：杨国庆(1978~)，男，江苏南京人，主要从事稻田蜘蛛群落结构与功能研究。

* 通讯作者：Author for correspondence, E-mail: JC_Wu@public.yz.js.cn

致谢：试验期间，杨卡燕、孙莉、施林峰、王文丽等同学参加了田间调查，特此致谢！

Foundation item: Key Project of National Natural Science Foundation of China (No. 39830040)

Received date: 2001-11-08; Accepted date: 2002-06-20

Biography: YANG Guo-Qing, Research field: structure and function of rice field spider community.

constructed by using several mathematical models. In addition, functional responses of *Pirata subpiraticus* and *Oedothorax insecticeps* to planthopper in presence and absence of water were also determined in laboratory. The results showed that PPP decreased with the increase of mean crowding of planthopper. At the same crowding, NPP was higher in presence of water than in absence of water. The relationship between NPP and *Pirata japonicus* density in presence of water was fitted by a parabola. NPP was maximum when the *Pirata japonicus* density was 1.4 per hill, but the above relationship was linear when there was no water on the field. Influence of water on NPP by Micryphantidae was not clear. The functional response experiments showed higher NPP of *Pirata subpiraticus* in presence of water than in absence of water. NPP in presence of water was 1.5 times higher than that in absence of water. However, there was no obvious difference under two conditions for NPP of *Oedothorax insecticeps*. Predation patterns of two spiders under two conditions (with or without water) in rice field was consistent with their respective response in the laboratory.

Key words: rice field; water; predator; predation number

文章编号:1000-0933(2003)04-0681-07 中图分类号:Q968.1 文献标识码:A

许多农业害虫的暴发往往与一些不合理的农业措施,如大量使用农药,农田生境单一化等原因导致天敌作用的下降有关^[1,2]。研究表明蜘蛛是稻田飞虱的重要天敌^[3~7]。因此采取一些农艺措施增强蜘蛛的捕食功能作用,从而达到减轻飞虱危害的作用,在水稻生产上具有很重要的意义。张古忍等曾就如何改善蜘蛛的生境条件,从长期效应来增强蜘蛛控制害虫作用,达到减少用药的目的而作了一些研究^[8,9],可如何从稻田本身出发,结合适宜的田间管理,通过一些具有短期效应的农业措施如灌溉,来达到迅速增强天敌捕食功能的研究则尚未报道。本文就稻田在有水与无水下对稻田蜘蛛捕食功能的影响作用作了2a的试验。

1 研究方法

1.1 试验田基本情况

试验田位于江苏邗江汊河镇农户田内,选择了两块长势良好的单季稻田作为调查田块,水稻品种为粳稻9520,6月25日移栽,田间管理与周围田块相同。

1.2 调查期间飞虱发生情况

2000年白背飞虱中等偏重发生,密度最高达60头/穴;2001年白背飞虱属轻发生,密度最高仅有3头/穴。褐飞虱两年期间属于轻发生。

1.3 调查方法

运用脉冲采样法结合杀死飞虱记数法^[11]对田间飞虱和天敌进行了调查,每块田每次随机选择15个点,每点4穴,共计查60穴水稻,调查时间以天为单位,依据飞虱发生情况连续调查几天或调查2~3d,每次记录田间有水与无水情况。另外一些辅助试验参照吴进才等进行^[11]。

1.4 室内功能反应

在室内用直径为21cm高18cm的塑料桶,装3/4稻田泥土并栽一株水稻,上面用透明胶片加纱封顶的罩子罩住,分有水与无水分别做6个密度,每个密度重复6次。实验时先在桶内接飞虱,约过30min后接蜘蛛,24h后检查捕食情况。拟水狼蛛为2001年7月23日接虫,7月24日检查;食虫瘤胸蛛为7月25日接虫,7月26日检查。

1.5 分析方法

(1)飞虱被捕食量 采用吴进才等的捕食量公式 $Y_t = (N_t + H_t + M_t) - (N_{t+1} + P_t + E_t + D_t)$ 进行计算,式中 N_t , N_{t+1} 为 t 和 $t + \Delta t$ 时刻飞虱数量; D_t 为 t 到 $t + \Delta t$ 期间飞虱的自然死亡数; P_t 为 t 到 $t + \Delta t$ 期间被寄生且死亡的飞虱数量; H_t 为 t 到 $t + \Delta t$ 期间新孵化的若虫数; M_t, E_t 为 t 到 $t + \Delta t$ 期间发生迁入和迁出的虫数。 **万方数据**

(2)平均拥挤度 采用张孝羲平均拥挤度公式^[2],计算飞虱的平均拥挤度并分析与飞虱被捕食的关系

$$\dot{x} = \bar{x} + \frac{S^2}{\bar{x}} - 1$$

式中, S^2 为样本方差, \bar{x} 为飞虱平均密度, 根据过去大量研究, 田间飞虱分布呈聚集分布, 因此用平均拥挤度可能更能反映捕食量的动态变化机制。

2 结果与分析

2.1 田间两种情况下飞虱被捕食百分率、被捕食量与飞虱平均拥挤度的关系

由表 1 数据, 经计算飞虱被捕食百分率与飞虱平均拥挤度关系可用指数型衰减模型拟合。在有水情况下的模型为 $Y = 59.583e^{-0.031\bar{x}}$, $r = 0.9117^{**}$; 无水情

况下为 $Y = 26.626e^{-0.0187\bar{x}}$, $r = 0.8760^{**}$ 。由模型可知, 飞虱被捕食百分率随飞虱平均拥挤度的增加而呈递减趋势(图 1), 在同一飞虱平均拥挤度时, 有水下飞虱被捕食百分率大于无水, 但在有水时随飞虱平均拥挤度增加被捕食百分率下降快于无水情况。在飞虱高平均拥挤度时, 有水和无水下的飞虱被捕食百分率趋于相同。飞虱被捕食量与飞虱平均拥挤度的关系可拟合成以下方程: 有水下为, $Y = \frac{\bar{x}}{2.0557 + 0.179\bar{x}}$, $r = 0.924^{**}$, 无水下为, $Y = \frac{\bar{x}}{2.8554 + 0.4582\bar{x}}$, $r = 0.894^{**}$ 。模型中可以看出, 在同一飞虱平均拥挤度时, 有水时的飞虱被捕食量均大于无水。但在低飞虱拥挤度时, 两者差异较小, 而在平均拥挤度大于 20 时两者差异较大(图 2)。两种情况在平均拥挤度超过 20 时, 捕食量的增加值趋于平稳。

2.2 田间两种情况下飞虱被捕食百分率、被捕食量与水狼蛛、微蛛密度的关系

根据表 1 数据, 分析了稻田两种优势种蜘蛛与飞虱被捕食百分率、被捕食量的关系, 结果表明: 在稻田有水和无水下, 飞虱被捕食量与水狼蛛密度呈不同的趋势(图 3), 前者呈二次抛物线型关系, $Y = -2.7668X^2 + 7.8871X - 1.1501$, $r = 0.653^*$, 在水狼蛛密度增加至 1.4 头/穴时飞虱被捕食量达最大, 高于此密度后飞虱被捕食量开始下降。而在稻田无水时则呈线性关系, 即飞虱被捕食量随水狼蛛密度变大而略有增加, 回归方程为 $Y = 1.2878X + 0.4456$, $r = 0.6464^*$ 。图 3 最终可以从图 3 得出同一水狼蛛密度时, 飞虱被捕食量有水大于无水。水狼蛛密度与飞虱被捕食百分率的关系呈指数衰减型(图 4), 回归方程分别为: 有水下 $Y = 82.11e^{-1.266X}$, $r = 0.8204^{**}$; 无水下 $Y = 39.061e^{-1.3055X}$, $r = 0.6471^*$ 。从总趋势来看, 水狼蛛密度增加时飞虱被捕食百分率下降, 这与吴进才等田间飞虱每日被捕食量与蜘蛛密度关系^[11]的结果相一致。

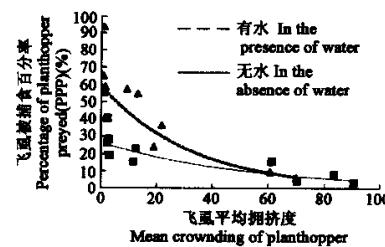


图 1 (有/无)水下飞虱被捕食百分率与飞虱平均拥挤度的关系

Fig. 1 Relationship between PPP and mean crowding of planthopper under two conditions (with or without water in rice field)

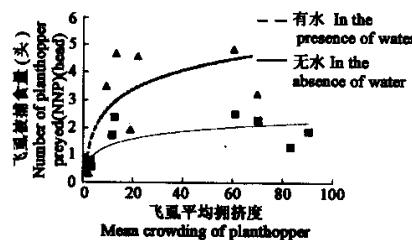


图 2 (有/无)水下飞虱被捕食量与飞虱平均拥挤度的关系

Fig. 2 Relationship between NPP and mean crowding of planthopper (with or without water in rice field)

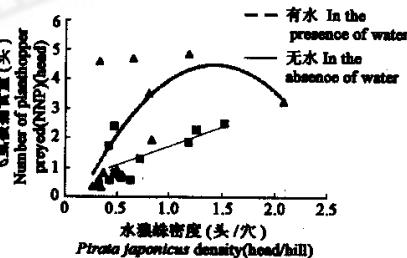


图 3 (有/无)水下飞虱被捕食量与水狼蛛密度的关系
Fig. 3 Relationship between NPP and density of *Pirata japonicus* under two conditions (with or without water in rice field)

表 1 田间飞虱每日被捕食量、被捕食百分率与飞虱平均拥挤度及蜘蛛密度的关系(2000、2001年)

Table 1 Relationships between planthopper number preyed, predation percentage per day by spiders in rice field with the mean crowding of planthopper, spider density

调查日期 (年-月-日) Sample date (Year-M-D)	飞虱被捕 食量(头/穴) Number of planthopper preyed	飞虱被捕 食百分率 Percentage of planthopper preyed(%)	飞虱平均 拥挤度 Mean crowding of planthopper	蜘蛛数量(头/穴)Spider density*							蜘蛛 总数 Total spiders
				微蛛	水狼蛛	肖蛸	球腹蛛	跳蛛	蟹蛛	管巢蛛	
				x_1	x_2	x_3	x_4	x_5	x_6	x_7	
2000-07-09	4.67	54.81	13.33	2.37	0.65	0.13	0.13	0.00	0.00	0.00	3.28
2000-07-10	1.93	24.18	19.10	2.68	0.83	0.18	0.12	0.02	0.00	0.02	3.58
2000-07-11	3.50	57.57	9.40	3.28	0.80	0.05	0.22	0.03	0.00	0.02	4.40
2000-07-12	4.57	36.62	21.93	3.05	0.33	0.08	0.10	0.00	0.00	0.00	3.57
2000-08-09	3.23	6.14	69.88	2.27	2.08	0.17	0.17	0.03	0.00	0.04	4.75
2000-08-10	4.83	9.74	60.58	2.58	1.18	0.15	0.20	0.06	0.00	0.05	4.23
2001-07-03	0.36	65.28	0.943	1.64	0.27	0.15	0.25	0.02	0.01	0.00	2.39
2001-07-04	0.51	55.68	1.33	1.80	0.33	0.20	0.30	0.01	0.00	0.00	2.67
2001-07-05	0.82	58.8	1.72	1.54	0.37	0.22	0.22	0.04	0.00	0.00	2.27
2001-07-06	0.33	26.72	2.30	1.63	0.35	0.09	0.26	0.00	0.01	0.00	2.34
2001-07-07	0.61	40.97	1.84	2.08	0.33	0.17	0.24	0.04	0.03	0.06	2.96
2001-07-08	0.91	93.55	1.19	1.96	0.50	0.16	0.25	0.03	0.01	0.01	2.92
#											
2000-07-14	1.73	15.41	11.68	3.77	0.42	0.17	0.13	0.00	0.00	0.00	4.48
2000-07-15	2.38	22.99	12.66	4.28	0.47	0.13	0.17	0.00	0.03	0.02	5.12
2000-08-05	2.50	15.76	61.08	3.55	1.52	0.07	0.13	0.10	0.05	0.02	5.43
2000-08-06	1.30	8.29	83.25	2.82	0.72	0.03	0.07	0.02	0.02	0.02	3.68
2000-08-07	2.27	4.30	70.08	2.75	1.25	0.12	0.37	0.03	0.02	0.00	4.53
2000-08-08	1.87	3.43	90.35	2.77	1.18	0.08	0.20	0.08	0.02	0.00	4.33
2001-07-16	0.57	19.17	3.44	3.52	0.43	0.04	0.27	0.02	0.02	0.00	4.32
2001-07-17	0.58	19.11	2.97	4.00	0.63	0.10	0.29	0.02	0.00	0.00	5.04
2001-07-18	0.81	28.39	3.07	3.92	0.48	0.05	0.30	0.02	0.02	0.02	4.81
2001-07-19	0.75	40.55	2.48	4.15	0.52	0.05	0.20	0.02	0.02	0.01	4.97
2001-07-10	0.65	26.5	2.40	2.52	0.54	0.09	0.22	0.04	0.00	0.01	3.43

* x_1 -Micryphantidae, x_2 -Pirata japonicus, x_3 -Tetragnathidae, x_4 -Theridiidae, x_5 -Saltidae, x_6 -Thomisidae, x_7 -Clubionidae
#以上为稻田有水, #以下为稻田无水 Data above the # means in the presence of water in rice field, data below the # means in the absence of water in rice field.

图 5 表明了稻田有水与无水条件下, 飞虱被捕食百分率与微蛛密度的关系。拟合的直线回归方程为: 有水 $Y = 2.5002X - 3.4158$, $r = 0.7758^*$; 无水 $Y = -0.0946X + 1.7281$, $r = 0.0781$, 由此可知在稻田有水条件下飞虱被捕食率随微蛛密度增加而线性增加, 而在无水条件下此相关性不明显; 图 6 表示了在稻田两种情况下, 飞虱被捕食量与微蛛密度的关系, 用二次抛物线拟合, 回归方程分别为: 有水 $Y = 29.277X^2 - 150.41X + 225.45$, $r = 0.4335$; 无水 $Y = 15.161X^2 - 92.177X + 150.42$, $r = 0.6986^*$, 飞虱被捕食百分率、被捕食量在两种条件下与微蛛密度的关系没有水狼蛛明显, 这可能与微蛛的栖息生态位比水狼蛛略高, 还表明稻田水狼蛛对飞虱的捕食起着关键性作用。

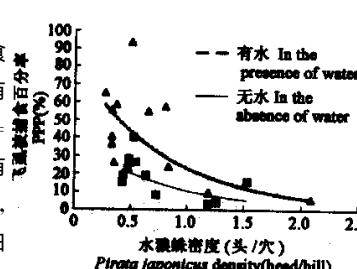


图 4 (有/无)水下飞虱被捕食百分率与水狼蛛密度的关系

Fig. 4 Relationship between NPP and density of *Pirata japonicus* under two conditions (with or without water in rice field)

2.3 室内两种情况下拟水狼蛛、食虫瘤胸蛛对飞虱功能反应比较

整个功能反应尽可能模仿田间一些非生物环境,较为客观地衡量在有水与无水情况下对两种蜘蛛捕食功能的影响。试验结果表明拟水狼蛛在有水时的捕食量大于无水(图7),经分析用 Holling II 模型拟合:有水为 $Na = \frac{0.6361N}{1 + 0.008N}$, $r = 0.996^{**}$; 无水为 $Na = \frac{0.2537N}{1 + 0.0105N}$, $r = 0.994^{**}$ 。模型参数的瞬时发现率前者高于后者 150.73%; 处置时间短 23.81%, 尤其当飞虱高密度时,两者捕食量差异更大。食虫瘤胸蛛对飞虱的捕食功能受水影响则很小(图8),拟合模型为:有水 $Na = \frac{0.3419N}{1 + 0.0047N}$, $r = 0.9901^{**}$; 无水 $Na = \frac{0.2916N}{1 + 0.0160N}$, $r = 0.9749^{**}$ 。试验观察亦表明食虫瘤胸蛛生态位较拟水狼蛛略高,因此对有水与无水情况下的捕食差异较拟水狼蛛小,这与田间结果相一致。

3 讨论

田间捕食者对害虫的捕食量的相对精确估计一直是较难解决的问题。一些作者尝试了用血清学方法^[13]、酶联免疫吸附法^[5,10],这些方法仍有一定的缺陷。吴进才等^[11]创造性地应用脉冲抽样结合杀死飞虱记数法研究了田间捕食者对飞虱的捕食量,实践表明该方法简单而实用。这为深入研究田间天敌捕食量的动态变化与一些生态因子的关系打开了突破口。

水是水稻生长所必需的生态要素也是可控因子。虽然不能仅从增强天敌功能方面单独添水治虫,但在水稻需水时期结合一些害虫的发生,保持田间有水状态,既能增强天敌的自然控制作用,又能创造不利于害虫发生的环境,这应该是较优的生态调控技术。水与水稻、害虫、天敌、中性昆虫存在着复杂的调控关系,这种调控作用的性质(有利或不利)还与时间和空间有关。研究表明水稻栽插前或栽插后稻田连续持水对稻田中性昆虫(蚊、蝇等)的数量增长有促进作用^[15],在稻田早期缺乏害虫猎物时,这些中性昆虫为天敌提供了营养源,促进了天敌种群数量的增长,为日后的害虫种群的自然控制奠定了基础。因此 Settle 等根据稻田群落物种类群的演替及营养联系,提出在水稻栽插前进行泡田,增加食腐者和食碎者种群数量,继而为天敌的繁殖提供食物保证^[16],这相当于吴进才等的中性昆虫对群落食物网的调控作用^[15]。水的适时调控对一些害虫也能创造不利环境条件。褐飞虱产卵于稻株下部,试验表明淹水使褐飞虱的卵孵化率明显下降,尤其是淹水和高温的互作可杀死稻株内绝大部分飞虱卵,淹水还

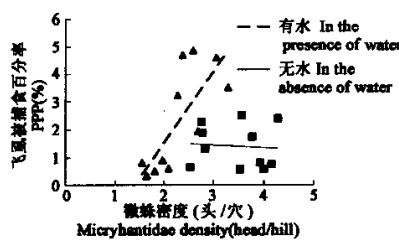


图 5 (有/无)水下飞虱被捕食百分率与微蛛密度的关系

Fig. 5 Relationship between PPP and density of Micryphantidae under two conditions (with or without water in rice field)

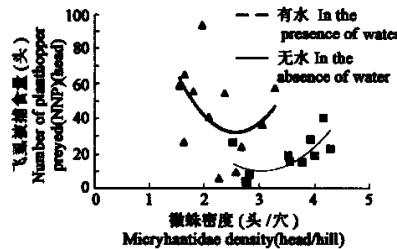


图 6 (有/无)水下飞虱被捕食量与微蛛密度的关系

Fig. 6 Relationship between NPP and density of Micryphantidae under two conditions (with or without water in rice field)

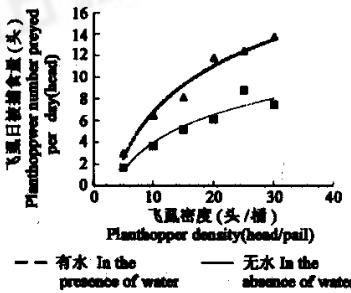


图 7 桶内(有/无)水时拟水狼蛛对飞虱功能反应

Fig. 7 Functional response of *Pirata subpiraticus* on brown planthopper (BPH) under two conditions (in presence of water and in absence of water) in pail

褐飞虱产卵于稻株下部,试验表明淹水使褐飞虱的卵孵化率明显下降,尤其是淹水和高温的互作可杀死稻株内绝大部分飞虱卵,淹水还

能使褐飞虱的取食量、产卵量和生存率明显下降。同时淹水使稻株内游离氨基酸含量明显下降,而总糖含量明显增加,从而对褐飞虱的生长发育产生不利影响^[17]。又据调查在白背飞虱和褐飞虱虫量累积期和下降期,田水深浅与种群密度关系不明显,虫量激增期和暴发期深水灌溉区高于正常灌溉区^[18]。另外在螟虫化蛹期间适时灌溉可增加蛹的死亡率。这表明在一定时期通过调节水创造有利于增强天敌作用而不利于害虫发生的环境是有可能的,是有一定的理论和实践依据的。但这种调控对稻田各类生物的综合效应有待深入研究和科学评价。

本文用飞虱的平均拥挤度分析与飞虱被捕食百分率、被捕食量的关系可能更科学一些。已有研究表明飞虱在田间的分布呈聚集分布。而飞虱高密度(高拥挤度)和低密度下,蜘蛛的捕食量、捕食百分率有较大差异,飞虱高密度时,由于捕食者的厌食反应,捕食量不是线性关系^[19]。在飞虱密度较低时,飞虱数零样方可能会较多,但仍会有一些样方个体很拥挤,而样方间天敌的捕食量可能不同。虽然平均密度与平均拥挤度之间多数存在平行的线性关系。但两者的参数有所不同,所以用平均拥挤度更符合田间实际。

References :

[1] Lou Y G, Cheng J A. Thesis about disastrous mechanisms of agricultural pest. In: Cheng J A, Zhou W J, eds. *Research about agricultural development of leaping over the century*. Beijing: China Environmental Science Press, 1988. 377~384.

[2] Lou Y G, Cheng J A, Pang B P, et al. Discussion on approaches to augment the effectiveness of enemies in rice ecosystem. *Acta Agriculturae Zhejiangensis*, 1999, **11**(6): 333~338.

[3] Gao C X, Gu X H, Bei Y W, et al. A study on the cause of resurgence of brown planthopper (BPH). *Acta Ecological Sinica*, 1988, **8**(2): 155~163.

[4] Gao C X, Bei Y W, Gu X H, et al. The coordinate effects of resistant rice varieties and natural enemies on brown planthopper population. *Acta Phytophylacica Sinica*, 1992, **19**(4): 317~322.

[5] Lim U T and Lee J H. Enzyme-Linked immunosorbent assay used to analyze predation of *Nilaparvata lugens* (Homoptera: Delphacidae) by *Pirata subpiraticus* (Araneae: Lycosidae). *Environmental Entomology*, 1999, **28**(6): 1177~1182.

[6] Jin C X, Wu Y. The control over the planthopper and leafhopper with the rice spider and the relation of the capacity for eating to the control effect. *Chinese Journal of Zoology*, 1985, **29**(2): 7~9.

[7] Cohen J E, Schoenly K, Heong K L, et al. A food web approach to evaluating the effect of insecticide spraying on insect pest population dynamics in a Philippine irrigated rice ecosystem. *Journal of Applied Ecology*, 1994, **31**: 747~763.

[8] Zhang G R, Zhang W Q, Gu D X. The structure and dynamics of rice main arthropods predatory nature enemy community. *Supplement to the Journal of Sun Yatsen University*, 1995a, (2): 27~32.

[9] Zhang G R, Zhang W Q, Gu D X. The structure and dynamics of rice main arthropods predatory nature enemy community. *Supplement to the Journal of Sun Yatsen University*, 1995b, (2): 33~40.

[10] Zhang G R, Zhang W Q, Gu D X. Application of ELISA method for determining control effects of predatory arthropods on rice planthopper in rice fields. *Acta Entomological Sinica*, 1997, **40**(2): 171~176.

[11] Wu J C, Jiang Y H, Yang G Q, et al. Comparison of daily predation of rice planthoppers by spiders with their predators in laboratory and caged-rice. *Acta Ecological Sinica*, 2002, **22**(8): 1266~1274.

[12] Zhang X X eds. *Insect ecology and forecasting*. Beijing: China agricultural press, 1995. 63~65.

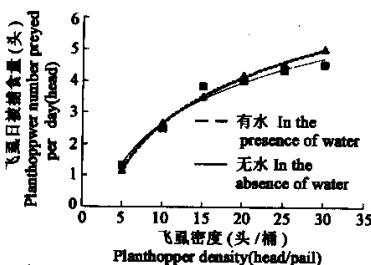


图 8 桶内(有/无)水时食虫瘤胸蛛对飞虱功能反应

Fig. 8 Functional response of *Oedothorax insecticeps* on brown planthopper (BPH) under two conditions (in presence of water and in absence of water) in pail

[13] Zhou H H. A study on predation of natural enemies to three rice insect pests by serological method. *Acta Phytophyacica Sinica*, 1989, **16**(1): 7~11.

[14] Wu J C, Hu G W, Tang J, et al. Studies on the regulation effect of neutral insect on the community food web in paddy field. *Acta Ecologica Sinica*, 1994, **14**(4): 381~386.

[15] Wu J C, Xu J X, Cheng X N. A study on trophic effect of neutral insect(wriggler) for *Pirata subpiraticus*. *Acta Ecologica Sinica*, 1997, **17**(3): 292~297.

[16] Settle W H, Ariawan H, Astuti E T, et al. Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. *Ecology*, 1996, **77**(7): 1975~1988.

[17] Zheng X S, Yu X P, Lu Z X, et al. Effects of submergence treatments on the growth and development of brown planthopper on rice plants and the nutrient component in rice plants. *Chinese Journal of Rice Science*, 1999, **13**(2): 117~119.

[18] Hu J Z, Lu Q H, Yang J S, et al. Influence of N fertilizer level and irrigation on population dynamics of the major insect pests in paddy fields and consequent rice yield. *Acta Entomologica Sinica*, 1986, **29**(1): 49~55.

[19] Wu J C, Pang X F. Mathematical model for predation of natural enemy complex and its application to forecasting population of the brown planthopper (*Nilaparvata lugens* Stål). *Acta Ecologica Sinica*, 1991, **11**(2): 139~146.

参考文献:

[1] 娄永根,程家安.论农业害虫的成灾机制.见:程家安,周伟军主编.跨世纪农业发展研究.北京:中国环境科学出版社,1998. 377~384.

[2] 娄永根,程家安,庞保平,等.增强稻田天敌作用的途径探讨.浙江农业学报,1999, **11**(6): 333~338.

[3] 高春先,顾秀慧,贝亚维,等.褐飞虱再猖獗原因的探讨.生态学报,1988, **8**(2): 155~163.

[4] 高春先,贝亚维,顾秀慧,等.抗性品种与天敌对褐飞虱种群的协同调节作用.植物保护学报,1992, **19**(4): 317~322.

[6] 金翠霞,吴亚.稻田蜘蛛对飞虱、叶蝉的控制作用.动物学杂志,1985, **29**(2): 7~9.

[8] 张古忍,张文庆,古德祥.稻田主要捕食性节肢动物群落的结构和动态.中山大学学报论丛,1995a, (2): 27~32.

[9] 张古忍,张文庆,古德祥.稻田主要捕食性节肢动物群落的结构和动态.中山大学学报论丛,1995b, (2): 33~40.

[10] 张古忍,张文庆,古德祥.用ELISA研究稻田节肢动物捕食者对稻飞虱的捕食作用.昆虫学报,1997, **40**(2): 171~176.

[11] 吴进才,姜永厚,杨国庆,等.田间蜘蛛集团对飞虱的每日捕食量与室内、盆栽水稻的捕食作用比较.生态学报,2002, **22**(8): 1266~1274.

[12] 张孝羲主编.昆虫生态及预测预报.北京:中国农业出版社,1995. 63~65.

[13] 周汉辉.血清法探讨天敌对三种稻田昆虫的抑制作用.植物保护学报,1989, **16**(1): 7~11.

[14] 吴进才,胡国文,唐健,等.稻田中性昆虫对群落食物网的调控作用研究.生态学报,1994, **14**(4): 381~386.

[15] 吴进才,徐建祥,程遐年.蚊幼对狼蛛的营养作用研究.生态学报,1997, **17**(3): 292~297.

[17] 郑许松,俞晓平,吕仲贤,等.淹水对褐飞虱生长发育和稻株营养成分的影响.中国水稻科学,1999, **13**(2): 117~119.

[18] 胡建章,陆秋华,杨金生,等.肥水管理对稻田主要害虫种群及产量的影响.昆虫学报,1986, **29**(1): 49~55.

[19] 吴进才,庞雄飞.多物种复合种群捕食量的数学模型及在褐稻虱数量预测中的应用.生态学报,1991, **11**(2): 139~146.