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of Moraceae. Due to their graceful crown and capability of growing on barren fields, these two species are
extensively grown in Three Gorges Reservoir area. Because of the tree management and the need of
cuttings for propagation (the propagation of F. microcarpa and F. virens is mainly dependent on cuttage) ,
branch cutting occurs quite often to these two tree species in Three Gorges Reservoir area. Branch cutting
may lead to an overall reduction of photosynthetic production in a tree because of the large loss of
productive leaf tissues. Therefore, in a branch-cut tree, the net productivity of remaining leaves, i.e. the
leaf efficiency of remaining leaves, is essential to tree’s regrowth and recovery. However, since branch-
cutting results in a higher ratio of unproductive wood to productive leaves due to the unaffected stem and
roots, and consequently per unit area of remaining leaves in branch-cut trees has to bear more maintenance
respiration costs, whether branch-cut trees are able to achieve high leaf efficiency is uncertain. In this
study, our aim was to investigate the leaf efficiency of branch-cut F. microcarpa and F. virens trees, and
evaluate the role of leaf efficiency in the growth of branch-cut trees.

The study was conducted in an experimental garden at the foot of Jinyun Mountain National Nature
Reserve (29° 50’ N, 106° 26’ E). Two branch-cutting seasons (spring and autumn) and four branch-
cutting intensities (0%, 20% ., 50% ., and 70% reduction of crown depth by removing branches) were
applied in the experiment. The aboveground biomass of branch-cut trees instantaneously after cutting as
well as one year after cutting was determined indirectly based on the regression formulas constructed with
harvested trees.

It was shown in the experiment that branch-cutting did not decrease the leaf efficiency of both F.
microcarpa and F. wvirens trees. Conversely, the leaf efficiency of F. microcarpa and F. wvirens trees was
increased after branch cutting. regardless of the intensity and the season of branch-cutting (except that the
leaf efficiency of spring-treated F. microcarpa trees did not alter too much). It was found that the effects
of branch-cutting on the increase of leaf efficiency varied with cutting season. For both species, branch-
cutting conducted in autumn led to a larger increase in leaf efficiency than that conducted in spring.
Furthermore, the pattern of leaf efficiency changing with cutting intensity differed between cutting
seasons. The leaf efficiency of autumn-cut trees increased with cutting intensity, but the leaf efficiency of
spring-cut trees did not present this pattern. The experimental results revealed that increased leaf
efficiency contributed to the aboveground biomass gain of F. microcarpa and F. wvirens trees after branch
cutting. The proportions of aboveground biomass gain due to the increase of leaf efficiency to the overall
aboveground biomass gain one year after cutting were 7. 9%, 12. 9%, and 21. 6% in 20%, 50%, and 70%
autumn-cut F. microcarpa trees; 24.4%, 18.1%, and 15.4% in 20%, 50% ., and 70% spring-cut F.
virens trees; and 9. 5%, 19. 9%, 35. 3% in 20%., 50%, and 70% autumn-cut F. wvirens trees.
Undoubtedly, the increase of leaf efficiency following branch-cutting could, to some extent, alleviate the
reduction of photosynthetic assimilate production of branch-cut trees. Raising leaf efficiency is a useful
strategy of trees to mitigate the adverse effects of external damages on growth.
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( L em ) : 0%, 20%.
° N 50%  70%, 0% . 20%.
B 50%  70%.
1997 , Fig. 1 Illustration of branch-cutting of F. microcarpa
, 20 ( and F. virens
1 , 20 ), s Branch-cutting was conducted by removing branches
R N and associated leaves from the lower tree crown.
. . . Cutting intensities were 0%, 20%, 50% ., and 70% .
( 70°C 96h , which implies that the crown depth were reduced by
Delta-T (Cambridge, UK) ), O/ 2070 9070 and 70 respectively.
20 R (y=ax+b,y: s L
% D?, sah ) (y=ax
+b.y: sx: 2S(LX DY), sab ).
C D 1997
1 1997
Table 1 Regression formulas of harvested trees
Spring-harvested trees Autumn-harvested trees
Stem Branch Stem Branch
F. microcarpa y=0.16x+3.8 y=0.28x+2.5 y=0.272+29.6 y=0.42x+1.83
r2=0.89, p<C0.001 r2=0.91, p<C0.001 r?=0.89, p<C0.001 r?=0.93, p<C0.001
F. virens y=0.292+31.2 y=0.54x+3.2 y=0.24x+52.2 y=0.52x+09. 22
r2=0.90, p<<0. 001 r?=0. 88, p<0. 001 r?=0. 87, p<<0.001 r2=0. 85, p<<0. 001
s B sy (g),x
(LXD?,cm?®); Y T
(Z (L X D?), cm®), . . 20, constructed

for stem dry weight (y: stem dry weight(g); x: product of stem length times squared stem basal diameter (¢cm?)) and
total branch dry weight (y: total branch dry weight (g); x: sum of the product of length times squared basal diameters
of all first-order branches (cm?)) of harvested F. microcarpa and F. virens trees. For each species, 20 trees were

harvested in the spring of 1997 and 20 trees were harvested in the autumn of 1997.

1998 5 s N
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Fig. 3 Leal efficiencies (mean-+se) of branch-cut and
uncut F. microcarpa and F. wvirens plants

(20%.50%.70%)
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Fig. 4 Contribution (C; %) (mean*se) of altered
leaf efficiency to the aboveground biomass increment of
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Contribution (C) of altered leaf efficiency to the
aboveground biomass increment was evaluated by ¢-test
(HO: C=0), significance levels were indicated by ns
(not significant) . * (p<C0.05), * % (p<C0.01). and
# % % (p<C0.001). For each species, after each
cutting treatment, means sharing the same lower-cased
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