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The Effects of Thermal Environments on Duration of Incubation,
Hatching Success and Hatchlings Traits in a Colubrid Snake,

Rhabdophis tigrinus lateralis (Boie)
CHEN Hui-Li, JI Xiang (School of Life Sciences, Hangzhou Normal College, Hangzhou 310036,
Zhejiang s China). Acta Ecologica Sinica,2002,22(11) :1850~ 1858.
Abstract: We incubated Rhabdophis tigrinus lateralis eggs laid by 12 females at constant (24, 27, 30, and
33 C) and fluctuating (mean = 26.1 C. range=20.1~32.7 C) temperatures to assess the effects of
thermal environments on incubation length, hatching success, and hatchling traits. Eggs were incubated at
the same moisture level (2 g water / 1 g vermiculite; producing approximately-12 kPa water potential in
different thermal environments in plastic containers (250mm X 180mm X 70mm) that were covered with a
perforated plastic membrane. Eggs were 1/3-buried in the substrate, with the surface near the embryo
exposed to air inside the container. We weighed containers daily and, if necessary, added water to the
vermiculite to compensate for small evaporative losses and water absorbed by eggs. Eggs were weighed at
5-day intervals.

Upon emergence, each hatchling was weighed, examined for locomotor performance, and then killed
by freezing to —15 C for later studies. Because locomotor performance is highly sensitive to changes in
body temperature in reptiles, we conducted trials at constant body temperature of 30 C. Body temperature

of hatchlings was controlled by placing them in an incubator at 30 C. Locomotor performance was
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assessed by chasing hatchlings along a round racetrack of which the circumference was 1. 92 m, which
allowed vertical filming with a digital video camera. Videotapes were examined for time-specific number of
stops, time-specific locomotor distance, and maximum continuous locomotor distance traveled without
stopping during the entire trial.

The frozen hatchlings were later thawed for data collection. Sex of hatchlings was determined by
pressing on both sides of the tail base using forceps for the presence or absence of hemipenes. SVL (snout-
vent length) and tail length were measured for each hatchling. After taking the measurements, each
hatchling was separated into carcass, fat bodies, and residual yolk. The three components were dried in an
oven at 65 C to constant mass, and then weighed. We extracted non-polar lipids from dried samples in a
Soxhlet apparatus for a minimum of 5.5 h using absolute ether as solvent. The amount of lipids in a
sample was determined by subtracting the lipid-free dry mass from the total sample dry mass. We
determined energy density of dried samples using an adiabatic bomb calorimeter. Ash in samples was
determined using a muffle furnace at 700 C for a minimum of 12 h.

All data were tested for normality using Kolmogorov-Smirnov test, and for homogeneity of variances
using Bartlett’s test. Log. or arc-sine transformations were performed when necessary to satisfy the
conditions for using parametric tests. We use linear regression analysis, one-and two-factor analyses of
variance (ANOVA), and one- and two- factor analyses of covariance (ANCOVA), when the assumptions
of parametric analyses were met. Nonparametric analyses were used when these assumptions were
violated. Throughout this paper, values are presented as mean =+ 1 standard error, and the significance
level is set at a=0. 05.

Incubation length, hatching success and the incidence of deformed embryos were affected by
incubation thermal environments, and the sex ratio of hatchlings was not. Incubation length decreased
dramatically as temperature increased. The average duration of incubation at 24, 27, 30 and 33 C was
45.0, 32.7, 27.3 and 26.0 d. respectively; the duration of incubation at fluctuating temperatures
averaged 37.9 d. Hatching success was the lowest (16.7%) at 33 C, but the highest incidence (100%) of
deformed embryos was recorded from eggs incubated at this temperature compared to eggs incubated in
other thermal environments. The overall sex ratio of hatchlings did not differ from equality. Except for
that males had longer tails than did females, all other examined hatchling traits did not differ between both
sexes. Hatchlings from eggs incubated at 24 C, 27 C, 30 C and fluctuating temperatures did not differ in
any of the examined traits. Hatchlings from eggs incubated at 33 C were lighter in mass and smaller in
size than those from other incubation thermal environments, characteristically having smaller carcasses but
larger residual yolks. Energy expenditure for embryonic development was higher in eggs incubated at 33 C
than in those incubated in other thermal environments. Hatchlings from eggs incubated at 33 C contained
lower quantities of ash than did those from other incubation thermal environments, but heavier hatched
shells were recorded from eggs incubated at this temperature. Except for those from eggs incubated at 33
C, hatchlings from other incubation thermal environments did not differ in the maximum length of
continuous locomotion, the locomotor distance per minute and the number of stops per minute. Taken
together, our data reveal that (1) a prolonged exposure of eggs of R. tigrinus at 33 C has an adverse and
presumably lethal effect on embryonic development, and (2) the range of viable incubation temperatures
can be widened when eggs are incubated at fluctuating temperatures.
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Table 1 The effects of incubation thermal environments on incubation length, hatching success, and sex ratio and

abnormality of hatchlings in Rhabdophis tigrinus

*

) Incubated (d) %) (£%/80 %)
Temperature eggs Duration of incubation Hatching success Sex ratio Abnormality
24 13 45.040. 7(40. 8~50.0) 100 (13/13) 10/3 0 (0/13)
27 8 32.740.4(31. 2~34.7) 100 (8/8) 6/2 0(0/8)
30 27 27.34£0.2 (25.6~29.5) 96. 3 (26/27) 12/14 3.7 (1/27)
33 12 26. 0 16.7 (2/12) 5/2 100 (12/12)
F' 11 37.940.6 (34.8~41.7) 100 (11/11) 6/5 0 (0/1D)
* Data on sex ratio including individuals that died at the late stage of incubation

f Fluctuating temperature

2.4
33 C s . ANOVA s
(F3,= 0.51.P = 0.679). (F3.=1.71,P
= 0.180) (F3,= 0.69,P = 0.613) C 3.
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Table 2 The effects of incubation thermal environments on size, mass and composition of hatchling Rhabdophis tigrinus

\ (C) Temperature r
Hatchling size, mass 24 27 30 33 F F values and results of
and composition N =13 N=23§ N = 26 N=17 N =11 multiple comparisons
(@) 2.55+0.10  2.6240.17  2.7240.06  2.7840.10  2.5740. 10 101 ne
Initial egg mass 1.95~3.36  1.90~3.35  2.17~3.38  2.42~3.23  2.26~3.20
T (mm) 145.942.3  152.042.6  150.84+1.0 146.342.8 T
Snout-vent length 126.0~157.0 141.0~163.0 139.0~163.0 126.0~163. 0 B
T (mm) 35.54£0.7  38.4%0.7  36.8+0.6 B 36.0£1.6 109 ns
Tail length 31.0~40.0  35.0~44.0  32.0~43.0 24.0~44.0
T (@) 2.17+0.11  2.2440.13  2.2240.05  1.8740.13  2.0740.10 6.93% " *
Wet body mass 1.31~2.80  1.75~2.74  1.75~2.74  1.26~2.09  1.57~2.80  24%,27%,30%,33" ,F*
T (mg) 491.5423.2  515.04£39.1 535.14£13.5 487.1+£28.7 483.9+22.8 2.76"
Dry body mass 351.4~641.4 345.4~666.3 377.9~690.1 393.7~555.1 374.8~615.4 242>,277,30°,33> FaP
(mg) 357.7+15.8  370.7+22.1  352.7+5.6  226.4425.2 348.4417.0 11.05% *
Carcass dry mass 256.5~454.5 279.9~454.7 294.8~400.3 102.6~292.1 269.1~444.3  24*,27%,30%,33",F°
T (mg) 93.7410.9  93.8413.8  136.749.5  252.8445.1  97.849.5 9.20% **
Residual yolk dry mass 37.2~144.4  29.9~152.8 34.9~241.8 142.7~481.0 43.9~148.4  24>,27",30",33%,FP
T (mg) 40.1+3.4 50.4+6.1 45.6+1.8 25.3+3.6 34.0+3.6 6.10% **
Fatbody dry mass 22.0~59.3  35.0~80.4  35.3~75.3  13.5~39.5  9.7~51.1 = 24°>,27%,30°>,33¢,F"
T (KD 11.540.6 12.040.9 12.340.3 11.0£0.7 11.140.5 3.53"
Hatchling energy 8.1~15.4 8.0~15.8 8.4~16.2 8.7~12.3 8.9~14.4 247,274,307, 33>, F2
T (mg) 97.944.6  102.948.8 101.9+28.8  85.5+4.5 85.3+4.2 4647 %
Hatchling lipids 74.8~133.9 72.2~143.5 76.6~134.6 70.0~102.5 65.5~108.2 24,272,302 ,33¢,Fbe
T (mg) 61.3+2.3 64.3+4.5 67.6+1.8 61.2+3.2 61.6+3.2 3.22"
Hatchling ash 45.0~76.3  44.3~80.4  51.4~93.5  47.8~71.1  46.6~81.4 24#>,27%b 302,33b Fab
(mg) 52.5+2.1 55.6+3.6 S4FTSL 1.2 34.344.0 52.4+2.8 9.10% * *
Carcass ash 37.5~63.8  42.1~70.0  45.6~76.7  16.9~45.1  39.5~70.8  24%,27%,30%,33",F*
T (mg) 8.7+1.1 8.9+1.4 13.54+1.0 26.9+4.3 9.241.0 10.09* *
Residual yolk ash 2.6~15.1 2.2~14.2 4.5~23.0  14.4~47.2  3.2~13.7  24>,27",30",33",F"
T (mg) 59.1+2.6 60.7+4.6 60.9+1.4 744147 58.0+1.6 7.11% %%
Hatched eggshell dry mass 44.0~83.8  41.9~75.4  50.8~75.0  64.0~93.7  52.0~67.5  24>,27",30",33*,F"
+ . “ 7 ANCOVA . .
ANOVA . ;a > b > ¢ Data are expressed as mean®SE and range. Variables

with the superscript of “T ” are compared with one-way ANCOVA, using initial egg mass as the covariate. The
remaining variables are compared with one-way ANOVA. The thermal environments with different superscripts differ

significantly, a > b > ¢

r1.2.6.38~42.50.511033 C C 2).,33 C

C 2,
24~30 C s
B ;24 C 27 C 30 C s s
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Table 3 The effects of incubation thermal environments on locomotor performance of hatchling Rhabdophis tigrinus

o) (stops » min~ 1) (m * min~ 1) (m)
. ' N Time-specific Time-specific Maximum continuous
Incubation temperature . .
number of stops locomotor distance locomotor distance
3.1+0.3 4.240.4 1.4+0.2
24 10
1~5 2.2~6.4 0.5~2.5
97 5 2.8£0.4 3.9£0.8 1.240.2
’ 2~4 2.3~6.6 0.7~1.6
2.6+0.2 4.6+0.3 1.740. 1
30 22
0~5 2.7~8.4 0.5~3.1
P 9 3.0£0.4 3.940.6 1.440.2
1~4 2.1~7.2 0.9~2.4
32.7 CC 1, (33 C) s
24~30 C ,
24~30 C o s
s N o
b o
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