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Abstract:Comprehensive concerns and researches have been executed on the ecological impacts of elevated
atmospheric CO, concentration on plants. Marine macroalgae, which occur in the intertidal and subtidal
zones and are the important components of the coastal ecosystem in terms of biomass and biodiversity,
play a key role in the coastal carbon cycle and have great potential for biomass production and CO,
bioremediation. A significant number of investigations have been carried out on the effects of elevated CO,
levels on photosynthesis in relation to the physiology in marine macroaglae, and many exciting progresses
were reached recently, although still less considerations had been paid on this field compared to land higher
plants.

It is general believed that the present ambient dissolved inorganic carbon composition in seawater can
fully saturate or nearly saturate the photosynthesis of many marine macroalgae while submerged, which
has been largely explained by their efficient utilization of HCO; pool in seawater. However, the
photosynthesis of intertidal marine macroalgae is usually enhanced by atmospheric CO, concentration
increase.

Much attentions are paid on the long-term (days to weeks) responses of marine macroalge to elevated
CO,. When cultured using aeration with elevated CO,, many species of marine macroalgae exhibited
depressed photosynthetic capacities, lower utilizing abilities for HCO; in seawater, and lower quantum
yields of photosynthesis, which were associated with the decreased photosynthetic pigment contents.,
electron transfer capacities as well as the reduced activities or contents of carbonic anhydras and Rubisco.
However, some other species showed no such down-regulation of photosynthesis. CO, enrichment increase

growth rates and biomass yields in some macroalgae, while some other species showed no change or even
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decreased growth rates. In general, the nitrate reducatase activity and the NOj uptake rate in macroalgae
increased under elevated CO; condition. However, the increased nitrate reducatase activity was not
necessary coupled with the increased assimilation of NO3 within cells. The cellular components of marine
macroalgae were also affected by elevated CO,. The contents of soluble protein, biliproteins and pigments
were reduced, but content of carbohydrate increased in elevated CO,-grown macroalgae , which resulting in
a increased C : N ratio. The calcification processes of calcareous macroalgae were slowed down under high
CO;. which were attributed to the decreased pH resulting from dissolution of CO,.

These above multifold responses of marine macroalgae to elevated CO, were ascribed to species-special
photosynthetic inorganic carbon utilization mechanism and the experimental conditions such as the CO,
concentration used, the culture duration, and nutrient conditions. Further studies for better understanding
the relationship between marine macroalgae with atmospheric CO, rise are prospected.
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