田间蜘蛛集团对飞虱的每日捕食量与室内、盆栽水稻的捕食作用比较

吴进才1,姜永厚1,杨国庆1,邱慧敏1,刘井兰1,王洪全2

(1. 扬州大学农学院植保系 225009; 2. 湖南师范大学生物系)

摘要,采用控制论中的脉冲采样法结合杀死飞虱计数法研究了田间蜘蛛对飞虱的每日捕食量估计并与室内、盆栽罩笼水稻功能反应的捕食作用进行了比较。结果表明田间蜘蛛平均每头每日对飞虱的捕食量为 0.669 头,这一捕食量比室内和盆栽水稻的捕食量要小得多;田间捕食百分率与飞虱密度呈二次抛物线关系,即飞虱低密度和高密度捕食百分率均低于中等密度,在每穴 10 头飞虱左右,捕食量和捕食百分率最高。在有一定存量蜘蛛时,捕食量与微蛛、狼蛛数量呈显著的二元线性回归关系,但偏相关系数为负。由此表明随蜘蛛密度的增加捕食量反而下降,这与一些多物种共存系统和田间罩笼的研究结果相一致。

关键词:稻田;蜘蛛集团;捕食量;飞虱

Comparison of Daily Predation of Rice Planthoppers by Spiders with Their Predatory Effect in Laboratory and Caged-rice

WU Jin-Cai¹, JIANG Yong-Hou¹, YANG Guo-Qing¹, QIU Hui-Min¹, LIU Jing-Lan¹, WANG Hong-Quan² (1. Department of Plant Protection, Agricultural College, Yangzhou University, Yangzhou 225009, China; 2. Department of Biology, Hu'nan Normal University). Acta Ecologica Sinica, 2002, 22(8): 1266~1274.

Abstract: Spiders are important predators to planthoppers in paddy field. There are many reports on predation function of the predator. But it is still difficult to estimate number of insects predated by natural spider population group owing to their generalist, interference of inter- and intra-species, and error of planthopper numbering. However, relative accurate estimation of the insects predated has practical and important meanings for forecasting planthopper occurrence, making control decision, and augmenting natural control of natural enemies. The daily predation number of field spider group to planthoppers was studied by pulse sampling (succession of predators and insect pests is considered as a cybernetics system, sampling data at any time as a representative of characteristic of the system). Planthoppers were killed by 50% dichlorvos (diluting 800 times using water) at 20 min before numbering to ensure accurate of planthopper observation. Sixty hills were randomly sampled and the numbers of planthoppers and predators and other preys were recorded. Predatory effect in functional response of spider in laboratory and on caged rice in pot were compared with that of field population predation in this paper. The number of planthoppers preyed was calculated by the following equation:

$$Y_t = (N_t + H_t + M_t) - (N_{t+1} + P_t + E_t + D_t)$$

Where Y_t is predation number of spider group; N_t and N_{t+1} are planthopper number at time t and $t+\Delta t$ (Δt = one day), respectively; H_t , M_t , E_t , P_t and D_t are numbers of hatched nymphs, immigrated and

基金项目:国家自然科学基金重点资助项目(39830040)

收稿日期:2000-12-10;修订日期:2001-07-10

作者简介:吴**涛力力数据**,男,江苏宜兴人,博士,教授。主要从事稻田群落生态,水稻害虫综合治理及农药对环境生物的影响的研究。

emigrated adults, parasitized nymphs and adults, and natural death during t to $t+\Delta t$, respectively. Some of the above parameters were determined by supplementary tests. H_t was obtained by pulling twenty hills of rice at the same time of sampling, transplanting in pots, and recording number of nymphs hatched till next day. P_t was determined by catching 100 nymphs from paddy field, raising in laboratory during t to $t+\Delta t$, observing number parasitized (P_n) $(P_t=P_n/100\times100)$. M_t and E_t were by following methods, if fifth instar nymphs are not recorded at time t, the adults at $t+\Delta t$ (next day) are considered as immigrants $(M_t=\text{number of adults at }t+\Delta t)$; The determination of emigrants are different from that of immigrants. Ten frames made of four bamboo poles, tying plastic film $(50\text{cm}\times50\text{cm})$ to the top, were randomly caged above rice plant canopy. The adults adhered to the plastic film, spreading petrolatum toward plant canopy, were thought to be emigrants. Sixty hills were sampled every day and numbers of planthoppers, spiders and other species were recorded. Comparison of predation number of field spiders to planthoppers was made with that of functional response in laboratory and on caged rice in pot.

The result showed that predation number was not positive correlation with planthopper and spider densities in table 1. The number was maximum at middle planthopper density (about 10 hill⁻¹). Data analysis from pulse sampling indicated relationship between predation percentages (Y) and planthopper density per hill (x) was fitted by a parabola, the equation was as followis

$$Y = 0.27241 + 0.002996x - 0.000136x^2 \pm 0.139445$$

From that equation, it was confirmed that the predation percentage at low and high density of planthopper was lower than that at the middle (about 10 planthoppers per hill).

The relationship of Y with two dominant taxa (Micryphantidae and Lycosidae) was constructed as following binary linear regression equation:

$$Y = 0.62064 - 0.0667 (\pm 0.012187)x_1 - 0.19116 (\pm 0.0288521)x_2 \pm 0.08519$$

Where x_1 is Micryphantidae, x_2 is Lycosidae. Their regression coefficients were negatives, indicating that predation number decreased with increase of the spider density. It had been confirmed by multi-predator coexistence system and field cage experiments.

Daily average consumptive planthopper per spider in paddy field was 0.669 hill⁻¹ by simple arithmetic mean of predation number, obviously smaller than that in laboratory and on caged rice. The experimental results in micro-space (petri dish or test tube) overestimated predation number of the predators for removal of inter- and intra-species competitions and simplistic environment. In caged rice, the predation number after increasing twice in turn for each species in the coexistence system of five predators, *Pirata subpiraticus*, *Oedothorax insecticeps*, *Clubiona japonicola*, *Tetragnatha praedonia* and *Paederus fuscipes* hardly increased. Inversely, that after removing for each in five species in turn scarely decreased.

Key words: rice field; spider group; predation number; planthopper

文章编号:1000-0933(2002)08-1266-09 中图分类号:S431.11,Q968.1 文献标识码:A

许多研究表明蜘蛛是稻田飞虱的重要天敌[1~5]。稻田蜘蛛种类多达 372 种[6],在江淮单季稻区常见种有 20 多种。蜘蛛是一类多食性(Generalist)捕食者,猎物谱很广[7]。由于蜘蛛在稻田害虫自然控制中起着重要作用,对其捕食功能进行了许多研究[8~14]。综观众多的研究文献,其研究方法主要在室内、盆栽水稻上的功能反应试验,田间调查包括生命表中的捕食作用组分分析[15]。由于蜘蛛的多食性和耐饥性强的特点,使得蜘蛛对害虫捕食的定量估计,尤其是田间定量研究变得相当困难。对飞虱控制作用的精确估计则更难[16],难点之一在于田间飞虱数量本身用盘拍法、吸虫器法、肉眼活虫计数法很难计数准确[17-18],例如盘拍法查获率仅为方数排[18]。以致于蜘蛛对飞虱捕食作用的相对精确估计国内外至今没有很好的解决办法,一些飞虱种群动态系统分析中的捕食子模型只能采用室内功能反应数据[19]。而解决这个问题对飞虱数

量预测预报、防治决策及以保护天敌为主的可持续控制有重要的科学和实用意义。甚至是一个关键性的问题。本研究采用控制论中的脉冲采样法结合杀死飞虱计数法进行了田间蜘蛛对飞虱每日捕食作用的定量研究。

1 研究方法

1.1 试验田基本情况

试验田位于江苏邗江汊河镇一农户田内,选择一块 0.133hm² 长势良好的单季晚稻田作为调查田块,水稻品种粳稻 9520,6 月 20 日栽插。田间管理与其它田块相同。

1.2 调查期间飞虱发生情况

2000 年邗江县白背飞虱属中等偏重发生,密度最高达每穴 60 头, $7\sim8$ 月上中旬田间以白背飞虱为主,8 月中旬后白背飞虱下降。今年褐飞虱属轻发生。8 月下旬后褐飞虱密度非常低,每穴不到一头。所以蜘蛛对后期褐飞虱的捕食量估计无法进行。

1.3 蜘蛛、飞虱数量的调查方法

依据过去的经验,田间蜘蛛对飞虱真实捕食量估计的准确性关键是要把飞虱数量计数准确。已有研究表明盆拍法、肉眼活虫计数法、粘胶板法及吸虫器取样很难把飞虱调查准确。因而本研究采用每次调查 15 个点,每点 4 穴,共 60 穴水稻,取样时先把罩笼(木框周围用薄膜围住)轻轻罩住每点 (4 穴),然后用 800 倍 敌敌畏把飞虱打死,过 15min 仔细清点框内飞虱、蜘蛛、及其它物种数量。为了保证下一次取样点不与上次取样点重合,一方面是选择了面积大的田块,另一方面每次采样后作好标记,下次采样避开上次已采样的点。

调查时间以天(d)为单位,一般依据飞虱田间发生情况或连续调查几天,或调查 $2\sim3d$ 。不一定要求调查一个世代。其基本思想源于工业自动控制中的采样方法,如同控制系统一样,把整个稻田群落演替过程看作一个连续进行的控制系统,通过不定期的采样及获得的采样数据可知运行系统的特征。这里不妨称为脉冲采样法。因为蜘蛛群体对飞虱的控制是一个连续的过程,任一时刻采样,都可反映该时刻的控制作用,分析许多采样点的数据就能了解控制过程的特性及控制量。这种方法也有助于研究天敌不同物种结构与控制量的关系。

1.4 捕食量的计算方法

设 t 和 $t+\Delta t$ 时刻飞虱数量分别为 N_t,N_{t+1} ; 飞虱自然死亡数 $D_t;t\sim t+\Delta t$ 期间被寄生且死亡的数量为 $P_t;t\sim t+\Delta t$ 期间新孵化的若虫数为 $H_t;t\sim t+\Delta t$ 期间发生迁入和迁出的虫数分别为 M_t,E_t ,则 $t\sim t+\Delta t$ 期间飞虱被捕食数量 $Y_t=(N_t+H_t+M_t)-(N_{t+1}+P_t+E_t+D_t)$ 。由于若虫寄生率、自然死亡率、迁入数(每穴迁入数)非常低,这里没有按发育历期进行折算。需要时可乘以一个折算系数。

1.5 辅助试验

 $t\sim t+\Delta t$ 期间新孵化的若虫数采用在 t 时刻同步从田间连根拔回 20 穴水稻,移栽入盆缸内,1d 后检查孵化虫数;自然死亡从田间采集 100 头若虫带回室内,1d 后检查死亡数,一般自然存活率在 99% 左右;迁入数的确定是在每次调查时带回 50 头 5 龄若虫,1d 后观察羽化数,折算成每穴成虫数,并与 $t+\Delta t$ 田间成虫数作比较,多出部分即视为迁入数,如果 t 时刻没有调查到 5 龄若虫数, $t+\Delta t$ 的成虫数视为迁入数。迁出数采用在水稻冠层上方用 $50\text{cm}\times50\text{cm}$ 的薄膜,朝向水稻的一面涂上凡士林,第 2 天检查薄膜上的成虫数,薄膜用竹杆扎牢悬空。每次 10 个点,计 2.5m^2 。

1.6 室内、半田间功能反应数据来源

参考 Hassan 等农药对有益生物影响的评价过程,把盆栽水稻的捕食作用试验近似看作为半田间试验。为了把田间真实的捕食量与已有的室内和半田间所研究的功能反应模型中的捕食量进行比较,本文收集了一些作者发表的研究结果[9~23]。目的是要了解从室内-半田间-田间捕食量的增减趋势情况。有可能会得出比较实际的捕食作用估计。以便为深入研究蜘蛛的捕食规律和实施 IPM 提供参考。

2 结果与分析方数据

2.1 田间蜘蛛对飞虱的每日捕食量

田间蜘蛛的实际捕食飞虱数量(表 1)表明,捕食量与飞虱密度不呈正相关,在飞虱中等密度时(约 10 头/穴左右)捕食量最大,被捕食百分率最高;飞虱高密度和低密度蜘蛛捕食量和捕食百分率均下降。经回归分析,飞虱密度与被捕食百分率之间符合二次抛物线关系。回归方程为 $\hat{Y}_1=0.27241+0.002996x-0.000136x^2\pm0.139445$ 。式中x为飞虱密度, \hat{Y}_1 为被捕食百分率。回归平方和的F值为 6.85,达极显著水平。相关系数r=0.7302,达显著水平。对上式求导令 \hat{Y}_1 为零,得最大捕食百分率时的飞虱密度为 11.01头,此时的最大捕食百分率为 $28.89\%\pm13.9445\%$ 。

捕食百分率与二种优势种蜘蛛的密度可用二元线性回归模型拟合。其方程为:

 $\hat{Y}_2 = 0.62064 - 0.0667(\pm 0.012187)x_1 - 0.19116(\pm 0.0288521)x_2 \pm 0.08519$

式中, x_1 一微蛛数量, x_2 一狼蛛数量。复相关系数 R=0.78472 达极显著水平,回归平方和的 F 值为 9.62,达极显著水平。但偏回归系数均为负,且狼蛛的负回归系数是微蛛的 2.87 倍,表明随着蜘蛛密度增加,飞虱被捕食百分率反而下降。这当然是在一定数量的蜘蛛密度之上再增加密度。同时还表明狼蛛的功能效应占绝对优势。这一结果与吴进才等[20]、周强等[10]的多物种共存系统试验和金翠霞等[4]田间罩笼结果相一致。

表 1 田间飞虱每日被捕食量与飞虱、蜘蛛数量的关系

Table 1 Relationship of daily planthopper number preyed by spider group in paddy field with the insect pest and spider density

调查日期	飞虱被捕	被捕食 百分率 Predation percentage (%)	飞風密度 (头/穴) Planthopper density (Numb./hill)	蜘蛛数量(头/穴)Spider density*(Numb./hill)								
(月/日) Sampling date (Month/Date)	食量(头/穴) Planthopper number preyed (Numb./hill)			微蛛	狼蛛	肖蛸 x ₃	球腹蛛 x4	跳蛛 _{x5}	蟹蛛	管巢蛛	蜘蛛总数 Total spiders	
07/09	4.67	0.5481	8.52	2.37	0.65	0.13	0.13	0.00	0.00	0.00	3. 28	
07/10	1.93	0.2418	7.98	2.68	0.83	0.18	0.12	0.02	0.00	0.02	3.58	
07/11	3.50	0.5757	6.08	3.28	0.80	0.05	0.22	0.03	0.00	0.02	4.40	
07/12	4.57	0.3662	12.48	3.05	0.33	0.08	0.10	0.00	0.00	0.00	3.57	
07/13	5.56	0.5031	11.23	2.78	0.52	0.15	0.17	0.00	0.00	0.00	3.62	
07/14	1.73	0.1541	11.23	3.77	0.42	0.17	0.13	0.00	0.00	0.00	4.48	
07/15	2.38	0.2299	10.35	4.28	0.47	0.13	0.17	0.00	0.03	0.02	5.12	
08/05	2.50	0.1576	16.05	3.55	1.52	0.07	0.13	0.10	0.05	0.02	5.43	
08/06	1.30	0.0829	15.68	2.82	0.72	0.03	0.07	0.02	0.02	0.02	3.68	
08/07	2. 27	0.043	52.78	2.75	1.25	0.12	0.37	0.03	0.02	0.00	4.53	
08/08	1.87	0.0343	54.45	2.77	1.18	0.08	0.20	0.08	0.02	0.00	4.33	
08/09	3. 23	0.0614	52.61	2.27	2.08	0.17	0.17	0.03	0.00	0.04	4.75	
08/10	4.83	0.0974	49.58	2.58	1.18	0.15	0.20	0.06	0.00	0.05	4.23	
08/22	0.35	0.2160	1.62	2. 22	2.27	0.22	0.33	0.23	0.02	0.04	5.32	
08/23	0.03	0.0500	0.60	1.70	1.93	0.18	0.25	0.12	0.02	0.07	4.27	

^{*} x_1 — Micryphantidae, x_2 — Lycosidae, x_3 — Tetragnathidae, x_4 — Theridiidae, x_5 — Saltidae, x_6 — Thomisidae, x_7 — Clubionidae

捕食量与总蜘蛛、狼蛛、微蛛、肖蛛密度的直线性回归关系不显著,相关系数均为负值,相关系数检验均不显著。但在飞虱中等密度 $(7 \ | 15 \ | 15 \ | 16.08 \sim 12.48 \ | 12.48$

各类蜘蛛数量为据均每头每天捕食的回归方程为:

狼蛛 $\hat{Y}_4 = 1.106844 - 0.399174x$ $r = -0.526468^*$ 微蛛 $\hat{Y}_5 = 0.61171 + 0.02287x$ r = 0.0348 肖蛸 $\hat{Y}_6 = 0.86819 - 1.50093x$ r = -0.17286 球腹蛛 $\hat{Y}_7 = 1.02915 - 1.91352x$ r = -0.33205

以上 4 个直线回归方程只有狼蛛达到显著水平,相关系数亦为负。这表明在几类蜘蛛中,狼蛛仍是捕食量主要影响因子。但由于狼蛛是一类凶猛性蜘蛛,高密度未必能增加捕食作用。

- 2.2 田间、半田间、室内蜘蛛捕食作用的比较
- 2. 2. 1 田间生命表法和脉冲采样法的比较 生命表法是 3d 调查一次,用肉眼活虫计数法。两种方法的蜘蛛每头每天捕食量如表 2。在飞虱 10 头密度以下时,脉冲采样法平均每头每天捕食 0.5574 头,生命表法 0.19402 头,前者比后者高 187.29%;飞虱密度 $10\sim20$ 头时,脉冲采样法平均每头每天捕食 0.75 头,生命表法 0.3675 头,前者比后者高 104.08%;飞虱密度高于 20 头时,脉冲采样法 0.6875 头,生命表法 0.6875 头,有者相差不大。尽管两种方法在调查时的蜘蛛群落结构组成有所不同,仍可以设想脉冲采样法可能更好地反映了田间蜘蛛捕食作用的真实情况,也就是说脉冲法比生命表法精确性高一些。
- 2. 2. 2 半田间和室内捕食作用的比较 从半田间和室内蜘蛛捕食功能反应的结果比较(表 3、表 4)来看,室内功能反应比半田间所得的捕食量要大得多。例如同是拟环纹狼蛛对飞虱若虫的捕食,祁彪等与周集中等相比,飞虱密度从 1 头到 50 头,前者比后者捕食量高出 $195.83\%\sim103.79\%$;同是拟水狼蛛,吴六 等与吴进才等相比,前者比后者捕食量高出 $8.33\%\sim78.11\%^{[8.9\cdot12\sim14\cdot20]}$ 。

表 2 脉冲抽样法和生命表法田间不同飞虱密度下平均每头蜘蛛每天捕食量的比较

Table 2 Comparison of daily predation number per spider estimated by pulse sampling and life table under different planthopper density in paddy field

2000 £	₣脉冲抽样法 Pu	ulse sampling (2000)	1987 年生命表法 Life table (1987) ^[20]							
飞虱密度	蜘蛛密度	每头每天捕	捕食百分	飞虱密度	蜘蛛密度	每头每天捕	捕食百				
(头/穴)	(头/穴)	食量(头)	率(%)	(头/穴)	(头/穴)	食量(头)	分率(%)				
Planthopper	Spider	Predation	Predation	Planthopper	Spider	Predation	Predation				
density	density	number/	percentage	density	density	number/	percentage				
(Numb./hill)	(Numb./hill)	d• spider	(%)	(Numb./hill)	(Numb./hill)	d • spider	(%)				
8.52	3.28	1.42	54.81	5.6	2.48	0.2272	30.18				
7.98	3.85	0.50	24.18	8.94	2.76	0.3647	33.78				
6.08	4.40	0.79	57.57	16.94	3.12	0.5683	31.40				
12.48	3.57	1.28	36.62	14.30	5.86	0.2747	33.77				
11.23	3.62	1.56	50.31	25.90	4.90	0.3952	22.43				
11.23	4.48	0.39	15.41	35.88	5.96	0.7338	36.57				
10.35	5.12	0.46	22.99	34.88	4.8	0.8125	33.54				
16.05	5.43	0.46	15.76	48.24	5.7	0.8357	29.62				
15.68	3.68	0.35	8.29	41.18	6.46	0.7177	33.78				
52.78	4.53	0.50	4.30	29.44	6.26	0.4973	31.73				
54.45	4.33	0.43	3.43	24.42	5.74	0.4651	32.80				
52.61	4.75	0.68	6.14	19.50	6.5	0.3379	33.79				
49.58	4.23	1.14	9.74	13.78	5.36	0.2892	33.74				
1.62	5.32	0.07	21.60	4.10	4.92	0.0799	28.78				
0.6	4.27	0.007	5.00	4.48	3.0	0.19	38.17				
				3.24	4.28	0.1083	42.90				

2. 2. 3 半田间与田间捕食作用比较 从表 4 和表 1 中脉冲法数据的比较中可见,半田间的捕食量仍极显著高于田间捕食量。飞虱密度在 $1\sim50$ 头左右范围内,半田间蜘蛛复合种群每头每天捕食量比田间脉冲法高得多,如了乳力线大挥度时,半田间比田间捕食量高 52.17%,飞虱 50 头密度左右时,高 292.73%。不过半田间捕食量又向田间真实捕食量靠近了一步。

表 3	至内切能反应每头蜘蛛每大捕食飞虱数量	Ē

Table 3	Daily number of	nlanthonners	preved by	snider e	stimated by	functional res	sponse in laboratory
I abic 5	Daily Humber of	prantinoppers	prejed by	spider c	stimated by	Tunctional 1 cs	ponse in laboratory

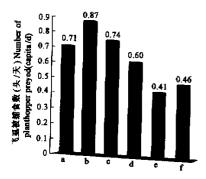
蜘蛛种类	捕食对象		飞虱	,密度 P	lantho	pper de	参考文献		
Spider taxa	Prey	1	5	10	20	30	40	50	Reference
拟环纹狼蛛	成虫 Adult	0.78	3.30	5.57	8.48	10.26	11.47	12.35	[9]a
Lycosa pseudoannulata	若虫 Nymph	0.71	3.04	5.14	7.86	9.54	10.68	11.51	[9]b
粽管巢蛛 Clubiona japonicola	成虫 Adult	0.43	1.76	2.88	4.23	5.02	5.53	5.88	[9]c
食虫瘤胸蛛 Oedothorax insecticeps	成虫 Adult	0.28	1.14	1.85	2.69	3.18	3.49	3.70	[9]d
拟水狼蛛	成虫 Adult	0.82	3.43	5.69	8.51	10.17	11.28	12.07	[14]e
Pirata subpiraticus	若虫 Nymph	0.39	1.89	3.69	6.98	9.94	12.62	15.05	[14]f
草间小黑蛛	低龄若虫 Nymph	0.43	1.81	3.31	4.59	5.54	6.18	6.64	[12]g
Erigonidium graminicola	高龄若虫 Nymph	0.42	1.67	2.67	3.81	4.44	4.84	5.11	[12]h
八斑球腹蛛 Theridion octomaculatum	若虫 Nymph	0.0016	0.03	0.08	0.19	0.32	0.44	0.56	[13]i

a,b,c,d—— 试验在 500ml 烧杯中进行,一穴水稻;e,f—— 试验在 500ml 广口瓶内进行;g,h—— 试验在大试管内进行:i—— 试验在培养皿内进行,结合了空间复杂度组建的功能 S 型模型

a,b,c and d—experiments in 500ml beaker; e and f—experiments in 500ml jar; g and h—experiments in big test tube; i—experiments in petri dish and S-model constructed with space complexity

表 4 盆栽水稻每头蜘蛛每天捕食飞虱数量

Table 4 Daily predation number per spider to planthopper on caged rice in pot


蜘蛛种类	捕食对象	飞虱密	度(头/	参考文献					
Spider taxa	Prey	1	5	10	20	30	40	50	Reference
拟环纹狼蛛	若虫 Nymph	0, 24	1 11	2.04	3.48	4 55	5.39	6.06	[8]a
Lycosa pseudoannulata	адтушрп	0. 24	1, 11	2.04	9. 40	4.00	0.00	0.00	٥٥]٣
拟环纹狼蛛	若虫 Nymph	0.11	0.52	0.95	1.63	2.14	2.54	2.86	[8]b
Lycosa pseudoannulata									C47.
拟水狼蛛	若虫 Nymph	0.36	1.64	3.57	4.99	6.46	7.57	8.45	[20]c
Pirata subpiraticus									
蜘蛛复合种群 Spider complexity	若虫 Nymph		0.54	0.70	0.95	1.73	2.27	2.70	[20]d

a—— 试验在 6 丛禾大纱筒内进行,b—— 结合空间异质性的校正模型;c—— 试验在大陶缸 (34cm) 内进行,移栽 4 穴水稻;d—— 试验在盆栽水稻内进行,每盆栽 1 穴水稻采用二次回归旋转组合设计,供试蜘蛛分别为拟水狼蛛、食虫瘤胸蛛、粽管巢蛛和菱头跳蛛

a— Experiments in big pot and six hills caged, b— predation number of functional response model combined space heterogeneity, c—experiments in big pot (34cm diameter) and four hills caged, d—coexistence experiment of four spiders, *P. subpiraticus*, *O. insecticeps*, *C. japonicola*, *B. hotingchiehi*, in pot rice, one hill each pot, using quadratic regression rotation combination design

2.3 半田间多物种共存时的添加、排除试验与田间捕食量比较

根据吴进才等在半田间(盆栽水稻)多种蜘蛛共存系统添加试验和排除试验的捕食量数据整理而成的每头蜘蛛每天捕食飞虱数量(图 1、图 2)表明在一定存量蜘蛛的共存系统中,再增加蜘蛛密度,每头每天捕食量没有显著增加,有的还有所下降,反过来,在多物种共存系统中逐一排除某一物种也没有降低捕食量,这两个试验是相互印证的。在飞虱 30 头密度时,添加试验的每头每天捕食量变动在 $0.41\sim0.87$ 之间,排除试验变动在 $0.51\sim0.61$ 之间,与田间每头每天捕食量变动在 $0.35\sim1.42$ 之间,平均 0.77 头,比较接近。说明在盆栽**对标类如**提进行的多物种共存系统试验相对比较真实反映了蜘蛛的种间种内互作与捕食作用的关系。

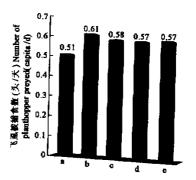


图 1 在多种捕食者共存系统中每种捕食者逐一增加 2 倍与飞虱被捕食的关系[17]

Fig. 1 Relationship of increasing twice in turn for each of five predators coexistence system with the planthopper preyed $\lceil 17 \rceil$

a——拟水狼蛛、食虫瘤胸蛛、粽管巢蛛、前齿肖蛸、隐翅虫各1头;b——拟水狼蛛增加2倍;c——食虫瘤胸蛛增加2倍;d——粽管巢蛛增加2倍;e——肖蛸增加2倍;f——隐翅虫增加2倍

a— Each of five predators, P. subpiraticus, O. Insecticeps, C. japonicola, Tetragnatha praedonia and Paederus fuscipes, was a single, b— Number of P. subpiraticus was increased twice and the others were a single, c— O. inseciceps twice, d— C. japonicola twice, e—T. praedonia twice, f—P. fucipes twice

Fig. 2 Relationship of removing in turn for each of five predators coexistence system with the planthopper preyed $\lceil 17 \rceil$

a——排除拟水狼蛛;b——排除食虫瘤胸蛛;c——排除 粽管巢蛛;d——排除肖蛸;e——排除隐翅虫。

a — Removal of *P. subpiraticus*, b — Removal of *O. insecticeps*, c — Removal of *C. japonocola*, d — Removal of *T. praedonia*, e — Removal of *P. fuscipes*.

3 讨论

3.1 田间脉冲采样法估计蜘蛛捕食量的可靠性

田间实时天敌捕食作用的定量研究一直是个较难解决的问题,也是生态学家和生物防治工作者力求 攻关解决的问题。从室内到半田间(盆栽水稻)再到田间捕食功能的研究是一个逐步逼近田间真实捕食作 用的过程。

从比较中可以看出室内蜘蛛的捕食量要比半田间大,更比田间要大几倍。但室内研究仍是一个必须的步骤。室内和半田间由于空间限制,环境复杂性降低,及种间结构单一,室内小空间内捕食量偏大是必然的。田间捕食量是各种环境及各物种生物学特性综合作用的结果,可靠性较高,但田间取样方法必须周密考虑,特别是主要猎物飞虱的计数准确性一般方法难以保证。用杀死法计数飞虱数量准确性很高,仍要注意取样点的随机性和分散性,以及每次调查人员固定,田间无水时更应仔细清点,另外调查田块面积要大。本研究每头蜘蛛每天捕食飞虱数如果把 15 次调查的数据加以平均为 0.669 头。这一数字似乎偏小。其实也不算小,这是各类蜘蛛合起来的简单平均,因为在田间要分清各蜘蛛物种的捕食作用是不可能的,也没有必要。假如飞虱发生一个世代是 25d,发生期间每穴水稻有蜘蛛 4 头,则总共可捕食 66.9 头飞虱。当然这是一个简单的假设,正如本文所述,捕食量与飞虱密度有关。捕食量是一个动态的量。蜘蛛每头每天捕食飞虱数与其它一些研究结果也有近似之处。金翠霞等在田间罩笼(1m×1m×1.5m),接入飞虱和狼蛛,当 10头蜘蛛时,每头每天捕食 0.59 头;当 30 头蜘蛛时,每头每天捕食 0.51 头^[4]。在蜘蛛捕食作用定量研究中,一些作者采用血清学方法,包括酶联免疫吸附法^[3,21,22]。这些方法对捕食者捕食对象的定性较准确,用于定量仍有一些问题,如交叉反应,每种猎物在捕食者体内的消化时间不同,消化时间可能还受温度等环境因子的影响,**野虾的数**型。

沟瘤蛛对白背飞虱和褐飞虱的阳性反应率范围分别为 $14.29\% \sim 63.64\%$ 和 $0\% \sim 85.71\%$;拟水狼蛛对两种飞虱的阳性反应率范围分别为 $0\% \sim 81.82\%$ 和 $25\% \sim 81.82\%$ 用 ELISA 有可能会偏低或偏高估计捕食作用。但 ELISA 方法比室内和半田间功能反应可能准确些。

3.2 田间蜘蛛每日捕食量与稻飞虱可持续控制的关系

综合室内、半田间、田间蜘蛛捕食作用的特性,可以把这类捕食者对飞虱的控制看作为小量、持续累积型控制策略。由于飞虱在环境条件适宜时易在短期内呈脉冲式爆发,根据本文捕食百分率与蜘蛛数量的抛物线关系,认为在飞虱密度大于 10 头以上时,仅靠蜘蛛难以有效控制。从种群生命系统的 Morris-Watt 模型和可持续控制角度来看,需要借助卵期天敌及其它类型天敌甚至包括品种抗性的协同控制作用。尤其是飞虱生命阶段卵期的自然控制是重要一环。

参考文献

- [1] Gao C X(高春先), Gu X H(顾秀慧), Bei Y W(贝亚维). Approach of the cause on resurgence of brown planthopper. *Acta Ecologica Sinica* (in Chinese)(生态学报), 1988, **8**(2):155~163.
- [2] Gao C X(高春先), Bei Y W(贝亚维), Gu X H(顾秀慧). The coordinate effects of resistant rice varieties and natural enemies on brown planthopper. *Acta Phytophylacica Sinica* (in Chinese) (植物保护学报), 1992, **19**(4): 317~322.
- [3] Lim U T and Lee J H. Enzyme-linked immunosorbent assay used to analyze predation of *Nilaparvata lugens* (Homoptera: Delphacidae) by *Pirata subpiraticus* (Araneae: Lycosidae). *Environmental Entomology*, 1999, **28** (6):1177~1182.
- [4] Jin C X(金翠霞), Wu Y(吴亚). The control over the planthopper and leafhopper with the rice spider and the relation of the capacity for eating to the control effect. *Chinese Journal of Zoology* (in Chinese) (动物学杂志), 1985, **20**(2);7~9.
- [5] Cohen J E, Schoenly K, Heong K L, et al. A food web approach to evaluating the effect of insecticide spraying on insect pest population dynamics in a Philippine irrigated rice ecosystem. Journal of Applied Ecology, 1994, 31: 747~763.
- [6] Wang H Q(王洪全), Yan H M(颜亨梅), Yang H M(杨海明). Studies on the ecology of spiders in paddy fields and utilization of spiders for biological control in China. *Scientia Agricultura Sinica* (in Chinese) (中国农业科学), 1996, 29(5):68~75.
- [7] Nyfferler M, Sterling W L, Dean D A. How spiders make a living. *Environmental Entomology*, 1994, **23**(6); 1357~1365.
- [8] Zhou J Z(周集中), Chen C M(陈常铭). Predation of wolf spider, Lycosa pseudoannulata on brown planthopper, Nilaparvata lugens, and its simulation model I. Functional response. Chinese Journal of Biological Control (in Chinese)(生物防治通报), 1986, 2(1):2~9.
- [9] Qi B(祁彪), Qi S M(祁少莽), You S L(游树立), et al. On the functional responses of some spiders to brown planthopper. Acta Phytophylacica Sinica (in Chinese) (植物保护学报), 1990, 17(1):29~34.
- [10] Zhou Q (周强), Zhang X W(张学武), Zhang G R(张古忍), et al. Predation of multi-predators on rice planthoppers. Plant Protection (in Chinese) (植物保护), 1997, 23(2):3~6.
- [11] Yu Z J (余昭杰), Wang H Q (王洪全). Environmental factors on establishment of dominant Micryphantid spiders in paddy field. *Acta Zoologica Sinica* (in Chinese) (动物学报), 1991, 37(1);22~29.
- [12] Yan Y J(严英俊), Wu Z F(吴中孚). Predation and simulation model of dwarf spider to brown planthopper.

 Journal of Fujian Agricultural College(in Chinese)(福建农学院学报), 1989, 18(3):289~294.
- [13] Ge F(戈峰), Chen C M(陈常铭), Laboratory and field studies on the predation of Nilaparvata lugens (Hom: Delphacidae) by Theridion octomaculatum (Araneae: Theridiidae). Chinese Journal of Biological Control (in Chinese) 生物特色通报), 1989, 5(2):84~88.
- [14] Wu L L(吴六), Wang H Q(王洪全). Functional response of a predator, Pirata subpiraticus (Araneae:

- Lycosidae) to its prey. Chinese Journal of Biological Control (in Chinese) (生物防治通报), 1987, 3(1):7~10.
- [15] Pang X F (庞雄飞), Hou R H (侯任环), Bao H L (包华理). Method to construct the natural life table of Nilaparvata lugens (Stål). Journal of South China Agricultural University (in Chinese) (华南农业大学学报), 1992, 13(1):1~5.
- [16] Luo X N(罗肖南), Zhou W X(卓文禧). Studies on the relationships of population fluctuation between rice planthoppers and natural enemies and natural control effects. *Natural Enemies of Insects* (in Chinese)(昆虫天敌), 1986, **8**(2):72~79.
- [17] Wu J C(吴进才), Guo Y J(郭玉杰), Shu Z L(東兆林), et al. A comparison of sampling methods of arthropod community in rice field. Entomological Knowledge (in Chinese) (昆虫知识), 1993, 30(3):182~183.
- [18] Qi L Z(綦立正), Ding J H(丁锦华), Zhang Y M(张有明), et al. Determination on acouracy of the plant-flapping method to investigate the population of brown planthopper in rice. Entomological Knowledge (in Chinese) (昆虫知识), 1995, 32(2);69~72.
- [19] Holt J, Cook A G, Perfect T J, et al. Simulation analysis of brown planthopper (*Nilaparvata lugens*) population dynamics of rice in the Philippine. *Journal of Applied Ecology*, 1987, **24**:87~102.
- [20] Wu J C (吴进才), Pang X F (庞雄飞). Mathematical model for predation of natural enemy complex and its application to forecasting population of the brown planthopper (*Nilaparvata lugens* Stål). *Acta Ecological Sinica* (in Chinese)(生态学报), 1991, 11(2):139~146.
- Zhou H H(周汉辉). A study on predation of natural enemies to three insect pests by serological method. *Acta Phytophylacica Sinica* (in Chinese)(植物保护学报), 1989, **16**(1):7~11.
- [22] Zhang G R(张古忍), Zhang W Q(张文庆), Gu D X(古德祥). Application of ELISA method for determining control effects of predatory arthropods on rice planthoppers in rice field. *Acta Entomologica Sinica* (in Chinese) (昆虫学报), 1997, 40(2):171~176.
- [23] Hassan S A, Bigler, Bogenschutz H, et al. Result of the sixth joint pesticide testing program of the IOBC/WPPS-working group «pesticides and beneficial organisms». Entomophaga, 1994, 39(1):107~119.

