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Advances in Study of Plant Organic Nitrogen Nutrition
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Abstract: Traditional models of nutrient cycling assume that soil microorganisms must decompose organic
matter, releasing inorganic N, before that N becomes available for plant uptake. But, there is a growing
evidences that plant can take up organic N.

In the moist tundra of arctic tundra, most wetland are poor inorganic, plant-available nutrients be-
cause mineralization is restricted due to low temperatures and anoxic soils. But tundra soils have higher
concentrations of water-extractable free amino acids than of inorganic N. Two tundra sedges. Eriophorum
vaginatum and Carex aquatilis, take up amino acids at least as rapidly as they take up NH; over a range of
concentrations, and compete well for glycine and aspartate N relative to NH, . Eriophorum vaginatum . a
non-mycorrhizal sedge that dominantes moist upland tundra throughout the circumpolar Arctic, can absorb
free amino acids, accounting for at least 60% of the nitrogen absorbed by this species in the field, and
grow on them as its sole N source. So the dynamics of labile organic, rather than of inorganic N, appears
to be the critical component of the tundra N cycle, at least in terms of controlling plant uptake and
growth.

Alpine and arctic ecosystems are similar in that N mineralization rates are heavily constrained by cli-
mate, and plant N demands cannot be met through the uptake of inorganic ions. In the ecosystems where
sedge commonly occurs, amino acids were present in the soil pore water, but in highly variable amounts.
Amino acid concentrations in soil pore water are 13 ~ 15 pmol/L in alpine dry meadow sits and 15 ~ 20
pmol/L in a subalpine fen habitat. The alpine and subalpine Cyperaceae species exhibited higher rates of
glycine uptake relative to NH; and NOj3 uptake, compared to species from the more temperate habitats. A
alpine sedge (Kobresia myosuroides) lacks the ability to take up NH/. This may reflect specialization to-
ward the uptake of organic N in the alpine and subalpine species.

Mycorrhizae can enhance the capacity of the plant to absorb amino acids. Deciduous shrubs, which are
ectomycorrhizal, have the highest rates of amino acid absorption (particularly of glycine); evergreen
species with ericoid mycorrhizae are intermediate ; and graminoids . which are largely nonmycorrhizal, tend
to have low rates of amino acid absorption. Mycorrhizal endophyte associated with ericaceous species can
absorb and then releases free amino acids that are subsequently taken up by the host plant without am-
monification suggests that plants take a more active role in nutrient acquisition and element cycling. At

concentrations of free amino acids in arctic tundra, these plant’s uptake rates of the three amino acids
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(glycine, aspartatic acid, and glutamic acid) together may account for between 10 and 82% of the total N
uptake in the field, depending on species.

The dominant plant species in the boreal forest where climate is similar to that in arctic, irrespective
of their type of mycoorrhiza. all compete well for, and use, glycine as a N source. At least. 91, 64 and
42% of the N from the absorbed glycine was taken up in intact glycine by the dwarf{ shrub Vaccinium myr-
tillus, the grass Deschampsia flexuosa and the trees Pinus sylvestris and Picea abies. respectively. Rates of
glycine uptake of these plants were similar to those of NH/ .

In agricultural systems, organic N potentially is important for plant N acquisition. Agricultural plants
are also shown to absorb amino acids in laboratory studies and in the field. Four agricultural plants
(Phleum pratense, Trifolium hybridum, T. pratense, and Ranunculus acris) can take up glycine in the
form of intact amino acid. A minimum of 19% ~23% of the glycine-derived N is take up as intact amino
acid by these species. Rice also can take up glycine-N in sterile sand-culture and the contribution of
glycine-N uptake to the plant’s N budget is dependent largely on the relative levels of glycine-N in a mix-
ture solution. The contribution of glycine-N increases with increasing the level of glycing-N and the uptake
of glycine-N may account for up to 55. 7% of the total N taken up by roots.

Plant roots are able to release amino acids into rhizosphere by passive diffusion at root tips. The free
amino acids exuded into the rhizosphere may be re-absorbed by roots, and also accessed by microorgan-
isms. Under sterile solution culture, Zea mays L. roots are capable of re-sorping over 90% of the amino
acids exuded. The rates of amino acid transport are similar both for plants and microorganisms indicating
that there will be intense competition for amino acid N within the rhizosphere. Studies in natural ecosys-
tems have shown that plants compete well for organic N. So the limiting factor to organic N uptake is like-
ly to reside in the availability of amino acids in the soil.

There is now a great deal of physiological and biochemical evidence for specific amino acid carries in-
volved in the active transport of different amino acids into plant cells. They are electrogenic transporters
that are driven by either transmembrane proton or electrical potential differences. Many amino acid trans-
porter genes have been isolated from higher plants, and it has been revealed that there exist multiple iso-
forms for each transporter. An extensive molecular characterization of amino acid carriers has been carried
out in Arabidopsis where evidence has been presented for a multi-gene family of amino acid permeases
(AAPs) . the members of which differ in their tissue distribution and substrate specificity. The mutants of
Arabidopsis that lack the activity of a basic-amino-acid transporter have been found. But these transporters
have very broad and overlapping specificities, although each transporter exhibits a preference for amino
acids possessing a particular molecular geometry or charge.

Recent work indicates that there are several different amino acids carriers present in Ricinus which
may be involved in a variety of physiological processes. Several amino acid carriers have been resolved in
Ricinus communis roots.

In summary, growing evidences demonstrate that plants can short-circuit N mineralization by directly
absorbing amino acids, then accelerate N turnover and exert greater control over N cycling.
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