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Abstract: The global carbon cycle has drawn special attention by policy makers and scientists. In December
1997, the Kyoto Protocol has been proposed by Parties to Climate Change Frame of United Nations. in
which 39 industrialized countries are asked to impletement the duties of reduction of CO, emission. Based
on recent estimation of global carbon change in the atmosphere, and ocean, anthropogenic carbon emission
to the atmosphere (7.1 Pg/a) is more than the sum of carbon accumulated in the atmosphere (3.340.2
Pg C) and absorbed by the ocean (2.0+0.8 Pg C). The surplus is about 1.8 Pg C/a, called missing car-
bon sink. If the missing sink were not quantified and located, the future CO, concentration in the atmo-
sphere would not be predicted. So missing carbon sink has been a critical problem in study of global carbon
cycle since 1970s. After investigating the major researches on the estimation of global carbon budgets, this
review assessed the estimate of carbon missing sink and its potential location, and analyzed the contributes
of carbon sink: climate change, CO, fertilization, N deposition, and regeneration of harvested forest.

In global scale, the amount of missing carbon is determined by four component: carbon accumulation
in the atmosphere. carbon emissions from fossil fuel combustion and land use change, and carbon absorp-
tion by ocean. The amounts of the four components have been measured or estimated with different data
source and period by different authors, which implies a missing carbon sink in range of 0~3.1 Pg/a. Car-
bon accumulated in the atmpshere were estimated in range of 2. 9~3.4 Pg C/a based on ice core records
before 1957, on atmospheric CO, measurement then. Now this estimation will based on global atmospheric
CO; measurement network established. Carbon released from land use change has been focused on tropical
rainforest, and was estimated to be 0. 4~2.5 Pg C/a. This large variation is caused by uncertainty in har-
vested forest area and amount of biomass burned. Carbon absorbed by ocean is estimated to be about 2 Pg/
a by oceanic circulation and biogeochemical models, which is very well in accordance with results obtained
by measurement of CO, difference on sea-air interface.

Many studies have believed the carbon missing sink to be located in terrestrial ecosystems. Carbon ac-
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cumulation in terrestrial ecosystems have been estimated from both analysis of CO, measurement in the at-
mosphere and the ocean, and investigation of forest inventory.

In global carbon cycle, tropical forest plays an important role, which has been extensively investigat-
ed. Houghton et al. estimated CO, release from forest harvest and fire in tropics in period of 1860~1980
and 1980s and concluded that tropical forest is a major atmospheric CO, source. Global atmospheric CO,
and isotope measurement also implied there is a CO, source in tropics. However, some studies showed
tropical forest be an atmospheric CO, sink. such as modeling terrestrial carbon in Brazil forest driving by
interannual climatic variation by Tian, long-term plot experiment by Philips, and flux measurement by
Grace.

Mid-latitude region of north hemisphere has been regarded as the most potential missing carbon sink
since 1990 by Tans et al. according to global atmospheric CO, and isotope measurement. then it was con-
firmed by nearly all analysis on atmospheric CO,, O;/N, & *CO, that there is a north mid-latitude carbon
sink. The sink is attributed to nitrogen deposition, regrowth of early-harvested forest and climate change.

IGBP has concluded that in terrestrial ecosystems, carbon sink was 0. 54 0. 5 Pg/a by forest regrowth
in north hemisphere, 1. 040.5 Pg C/a by CO, fertilization, and 0. 6£0. 3 Pg /a by N deposition.

The influences of climatic change on carbon sink in terrestrial ecosystems have been investigated in
two aspects: one is the relationship between carbon sink and temperature change, another is interannual
climatic change driving carbon sink. Terrestrial carbon sink is controlled by temperature through two pro-
cesses: enhancing respiration to release more carbon, and speeding up N mineralization to stimulate plant
growth to sequester more carbon. However, we have not enough evidences to verify the two processes
function well.

By modeling carbon dynamic in Brazil forest and flux measurement in Harvard forest, it is found that
carbon exchange between ecosystems and the atmosphere changes annually and was driven by climatic
change. In hot and dry years, forest ecosystem may be a carbon source, in other years it may be a carbon
sink.

CO,, fertilization will stimulate plant growth and enhance ecosystem carbon storage. Friedlingstein ez
al. estimated carbon stored in terrestrial ecosystems was increased by 1. 2~2. 04 Pg C/a.

In most of terrestrial ecosystem, productivity was limited by shortage of N, so N deposition will in-
crease plant photosynthesis. By combining atmospheric transport model projecting the distribution of N de-
position, and biogeochemical model simulating soil. and plant carbon dynamics in terrestrial ecosytems., it
was estimated that N deposition could enhance carbon storage by 0. 5~1.50 Gt C/a. However, when soil
N accumulated to saturation, carbon storage enhancement by N deposition will disappear.

In forest ecosystems, carbon storage will increase with plant growth. In eastern U.S. A, forest re-
generated widely on early-harvested land or abandoned arable land. which is a carbon sink now. Dixon et
al. had concluded estimates of carbon sink by regrowth in the world. Note that carbon sink due to re-
growth is a result of many processes: natural growth, CO, fertilization and N deposition fertilization.

Because of complex of carbon cycles in ecosystems and limitation of methodology. there are many dif-
fculties to confirm the existance of carbon sink, or to determine the location and causes of carbon sink. So
it is needed to conduct more observation, measurement, and to collect more detail data of land cover, cli-
mate, vegetation and soil.
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Table 1 The components of global carbon balance
FOSSll_fl.lel Land use change and Accumulation in ()ceanfc Missing carbon Reference
combustion . . the atmosphere absorption
biomass burning
3.6 1.8 0.5~0.8 1.0~1.3 [6]
5.2 3.3 2.5 2.0 4.0 [7]
5.0 1.3 2.9 2.4 1.0 [8]
5.4 1.6 3.4 2. [0 1.6 [9]
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5.44£0.5 0.6~2.5 3.240.2 2.04+0.6 1.8+1.3 [12]
5.5£0.5 1.6£1.0 3.2+0.2 2.0£0.8 2.1 [13]*
*1980~1989 1980~1989 Average value
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Table 2 Estimations of missing carbon sinks in tropics N N
Sink ’
Period (Pg C/a) Method Reference °
1.3
1980s —1.6 [25]
1992~1993 —1.74+1.6 CO; &13CO, [16]
1980s  —1.65+0.40 [33] : CO,
1990s 0.6240.3 [28] N . .
1982 or 1992 —0.2 TEM [27] ( 3). CO,.
1981 or 1993 0.7 TEM [27] 0,/N, 3 1CO,
1980~1994 0.2 TEM [27] .
1970s —0.1 [34] ° ’ CO,
3

1990s —0.
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Table 3 Estimations of missing carbon sinks in tropics s
Sink °
Period (Pg C/a) Method Reference
1981~1987 2~3 CO, [10] ’ °
1992~1993 2.5~3.5 CO, &1CO, [16] IGBP
1991~1994 1.940.9 CO» O:/N, (18] 0o, 0.5+40.5 Pg/a.
1988~1992 1.4-40.2 CO, [38] CO, 1.00. 5 Pg C/a.
1988~1992 2.24+0.2 CO, [38]
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