中国农田土壤 N₂O 排放通量分布格局研究

王效科¹,庄亚辉¹,李长生²

(1. 中国科学院生态环境研究中心系统生态室,100085,北京;2.CSRC,University of New Hampshire,Durham, NH03824,USA)

摘要:中国作为世界上一个重要农业大国,对全球大气中 N_2O 浓度的影响正在引起人们的普遍关注。该研究采用针对农业土壤痕量气体排放估算建立的、基于 N_2O 的产生、传输和消耗机理的反硝化分解(DNDC)模型,在建立了有关中国气候、农业土壤和农业生产的分县数据库基础上,估计了我国各县农业土壤 N_2O 的排放通量,发现我国农田土壤 N_2O 排放通量有较明显的地区差异,西北地区较低,东南地区较高。还发现无论温度升高,还是施肥量变化,对我国农田土壤 N_2O 排放通量的影响,都存在区域差异,表现为东南地区的变化幅度较西北地区大,这可能与我国气候的干湿变化有较密切的关系。

关键词:农田土壤;排放模型;N2O排放分布格局

The distribution pattern of N_2O emission from agricultural soil in China

WANG Xiao-Ke¹, ZHUANG Ya-Hui¹, LI Chang-Sheng² (1. DSE, Research Center for Eco-Environmental Sciences, CAS, Beijing 100085; 2. CSRC, University of New Hampshire, Durham, NH03824, USA)

Abstract: As a large country, the impact of China's agricultural practice on atmospheric N_2O would be highly significant. Field measurements of N_2O emission from agricultural land have been carried out. However, it is still difficult to estimate the total soil emission of N_2O in China from these field measurement because of the diversity of climate and cultivation practices that control soil N_2O emission. In this study, in order to estimate N_2O emission more accurately, a process-oriented model DNDC (Denitrification and decomposition) was employed.

DNDC model has been developed to predict soil carbon and nitrogen biogeochemistry, including N_2O and other trace gas emissions. DNDC was constructed with two components that reflect the two-levels of driving force which control geochemical and/or soil biochemical processes related to trace gas emissions. The first component, consisting of soil conditions, crop growth and decomposition sub-models, predicts soil temperature, moisture, pH, redox potential (Eh) and substrate concentration profiles based on ecological drivers (e.g., climate, soil, vegetation and anthropogenic activity). The second component, consisting of the nitrification, denitrification and fermentation sub-models, predicts NO, N_2O , CH₄ and NH₃ fluxes based on soil environmental variables. Classical laws of physics, chemistry or biology, or empirical equations generated by previous studies were used in the model to parameterize each specific reaction. The entire model forms a bridge between basic ecological drivers and trace gas emissions.

DNDC model has been tested against a number of field measurements worldwide. Most of the tests showed that DNDC was able to capture general patterns and magnitudes of N₂O emissions observed in field. To run DNDC using data files of climate, soil and farm management compiled in University of New Hampshire, we validated DNDC against 6 site studies in Nuancheng, Hebei Province, Shenyang, Liaoning

基金项目:国家自然科学重大基金(49899270 和 39790100)资助项目

收稿日期:199万1方2数据日期:2000-05-30

作者简介 :王效科(1964~),男,陕西人,博士,副研究员。主要从事生物地球化学模型、陆地生态系统 C、N 循环研究。

Province, Agricutural experiment station and Changqiao Village of Wuxian County, Jiangsu Province, Suburban of Beijing and Guangzhou, Guangdong Province under different climate/soil/land cover/management conditions. DNDC could repeat the range of N_2O emissions observed in 4 sites. These results imply that DNDC may have modeled the fundamental processes influencing directions and rates of the key biochemical and geochemical reactions controlling N_2O emissions from agricultural soils, and thus may be suitable for application to estimate the N_2O emission in China.

The result showed that under the climatic, soil and farming management conditions in 1990 0.31 $(0.18 \sim 0.44)$ Tg N₂O-N was emitted from 96 million hm² of cropland in China. The emissions in north and northwestern parts of China where the climate is dry, or moderately-dry, or moderately-wet were lower than 5.5 kg. hm⁻². a⁻¹. Higher emissions occurred in western Sichuan Province, northeastern China and Southeastern China because in the former two parts there is high soil organic matter and in the last part there is higher temperature enhancing soil nitrification and denitrification.

To study the impact of anthropogenic activities on N_2O emissions at a regional scale, we designed a baseline scenario and several alternative management scenarios to model national N_2O emissions of China. The baseline scenario was set based on current farming practice, such as crop types and rotation, tillage, fertilization, manure amendment, irrigation and flooding. Alternative scenarios were generated by varying some of the components of management (e. g., zero, half or double of current fertilizer) or climate (e. g., increased air temperature by 2 C or 4 C). The spatial pattern of soil N_2O emission higher in southeastern China than northwestern China was never changed by all alternative scenario. But the difference between alternative and baseline scenarios are always bigger in southeastern China than northwestern China and inversely relate to humidity gradient. For example, when temperature rise by 2 C, N_2O emission will increase by 7.9% all China. In most of counties of southeastern China, N_2O emission will increase by more than 10%. When fertilizer added was reduced to zero, in most of counties of Southeastern China, N_2O emission will decrease by more than 30% while N_2O emission will decrease by less than 10% in most of counties of northwestern China. In northwestern China, N_2O emission is not sensitive to changes in temperature and fertilizer because of limit of water resource, nitrification and denitrification are controlled by the water supply but not temperature and fertilizer.

Key words:agricultural soil; emission model; pattern of N₂O emission 文章编号:1000-0933(2001)08-1225-07 中图分类号:Q143 文献标识码:A

 N_2O 是一种长寿命的温室气体,其温室效能是 CO₂ 的 200 倍^[1]。1992 年全球大气中 N₂O 平均浓度为 311×10⁻⁹ (v/v),并正在以每年 0.25%的速度增加。据估计,每年人类活动向大气中排放的 N₂O 为 7.2 (2.1~14.7)Tg N/a^[2],其中农业生产排放的 N₂O 平均为 3.5(1.8~5.3)Tg N/a,占人类活动排放总量的 49%。中国作为世界上一个重要农业大国,农业生产对全球大气中 N₂O 浓度的影响正在引起人们的普遍关注。

在我国,农田 N₂O 排放的测定已经有十多年的历史了,积累了一些数据,但与我国大的农田面积、多变 的农业气候条件和耕作措施相比,仅有测定结果还是很有限的。如果单靠实验观测结果,是难以给出中国 农田 N₂O 排放总量的可靠估计。本研究,通过对 N₂O 产生过程—— 硝化和反硝化过程的模拟,建立了与这 些过程有关的一些机理关系式,用过程模型的方法给出中国农田 N₂O 排放总量的估计,并着重分析其分布 格局及其变化。

- 1 研究方法
- 1.1 DNDCF模型数据

在国外,已经有多种估算陆地生态系统的 $m N_2O$ 排放通量的模型 $m ^{[3]}$ 。从最简单的经验公式,如 $m N_2O$ 排放

Li 等在研究农田土壤中碳氮地球化学循环规律的基础上,建立了 DNDC(Decomposition and Denitrification)模型 $[7\sim9]$ 。其模型的结构如图 1。模型的输入项目如表 1。该模型既可以对某一实验点的 N₂O 排放 通量进行模拟,也可以估算中国和美国的农田土壤 N₂O 排放量。

表1 DNDC 模型的输入项目

Table 1 Input items of DNDC model

因子 Factors	项目Properties
气候 Climate	日最高最低气温和日降水量
土壤 Soil	容重、质地和粘粒含量、有机质和 pH
耕作措施	土地利用类型、作物产量、作物物候(播种期和收获期)、肥料使用量(无机肥和有机肥,无机肥分为:硝
Measure	酸盐、铵盐、碳酸氢铵、尿素和氨水;有机肥区别不同的碳氮比)、施肥时间(有机肥和无机肥)、耕地(时
	间和方式)、灌溉(时间、水量和 $_{ m pH}$)、淹水(始末时间)和锄草(时间和方式)

DNDC 模型能够估算硝化和反硝化过程中产生的 N₂O₃有机质分解和根呼吸所产生的 CO₂,模拟土壤 碳库和氮库的动态行为^[7~9]。由 4 个子模型组成(图 1):土壤气候子模型利用每日气象数据(温度、降水)预 测每小时的土壤温度和湿度剖面、土壤水流和植物吸水。作物子模型模拟各种作物从播种到收获的生长状 况,预测籽实、秸杆和根系的生物量和氮含量。作物的生长受根区土壤氮和水分的限制。水分蒸腾是由作物 生长和作物水分利用效率决定的。分解子模型有 4 个土壤碳库,枯落物、易分解及难分解腐殖质和微生物 生物量等。每一碳库有一个固定的分解速率和碳氮化。分解速率受土壤质地、土壤温度和湿度以及氮素供 给控制。分解过程中矿质化的氮素以 NH⁴ 形式进入无机氮库,进一步硝化成 NO⁵ (有 NO 和 N₂O 形式的 N 损失),或被植物吸收、淋溶、转化成挥发性 NH₃,或被粘粒矿物吸附。土壤中可溶性碳为硝化和反硝化作 用提供能源。它的水平与凋落物、可溶性腐殖质和死微生物分解释放的碳有关。作物生长和分解子模型的 时间尺度为日。硝化反硝化子模型以小时为时间尺度。降水、淹水和低温为主要激发因子。这些激发因子 都会造成土壤水分增加及土壤有效氧对反硝化反应的起动。NO⁵ 和可溶性C 库的初值由分解子模型提 供。对于反硝化还原过程(NO⁵ → NO² → N₂O → N₂)的每一步的速率,是由可溶性碳、土壤温度、pH、氮基质 的有效性和反硝化菌数量决定的。雨后土壤的干燥,每一模拟层的反硝化能力随土壤湿度减少而降低。反 硝化子模型能够预测雨后土壤中 NO⁵ 的消耗和土壤排放的 NO、N₂O 和 N₂。

1.2 输入数据的准备

对于某一地点的 N₂O 排放量的模拟,各种数据的输入可以根据程序提示逐一进行。而对区域的模拟, 问题就变得复杂多了。这里采用地理信息系统技术,按照 DNDC 模型输入格式的要求,通过建立以县为单 元的数据库文件,作为 DNDC 模型的输入。该数据库包括了全国 2 486 个县的编码、地理位置、土壤有机 质、粘粒含量和 pH 最大值和最小值、气象数据、各种土地利用类型面积等。中国县界来自国际地球科学信 息网络(CEISIN,http://www.ceision.org)。气象资料来自 CO₂ 信息分析中心(CDIAC,ftp://cdiac.esd. ornl.gov)。有关土壤性质的资料,来源于《中国土壤图集》^[10]。土壤性质数据是将土壤质地分布图、有机质 分布图和 pH 分布图,采用地理信息系统 Arc/Info 进行数字化,并与全国县界相重叠,得出各县的这些土 壤性质的最大值和最小值。有关耕作制度资料来自《中国农业物候图集》^[11]和有关农业栽培指导手册。土地 利用类型是影响模拟估算结果的重要因素,不同土地利用类型(包括作物类型和轮作制度)所采用的耕作 措施是不一样的。这里将中国的农业土地利用类型分为 18 个类型:小麦玉米轮作、冬小麦、春小麦、玉米、 单季稻、双季稻、油菜、土豆、高粱、秋作物类、小麦水稻轮作、大豆、棉花、甘蔗、甜菜、绿肥、草地和空地。以 县为单元的**有上性利用**类型的面积数据来自农业部有关统计资料。

1.3 国内农田生态系统 N₂O 排放通量的实测数据

图 1 DNDC 模型结构框架图

Fig. 1 The structure of DNDC model

1 Climate and soil property;2 Irrigation, practice;3 Crop and sowing and harvesting dates;4 Fertilizer and manure application;5 Soil-climate sub-model;6 Temperature profile;7 Moisture profile;8 Water flow;9 Plant growth sub-model;10 Biomass (N,C pool);11 Biomass allocation(root,stalk and seed);12 Litter input;13 Available N;14 Denitrification sub-model;15 Decomposition sub-model;16 Carbon pool (litter, microbe, labile and resistant humus);17 Organic N pool;18 Soluble organic carbon;19 Microbiological biomass

模拟结果的可信度,只有与实测结果数据进行比较才能确定。尽管 DNDC 模型对于 N₂O 排放量的模 拟估算,已经先后与美国、德国、英国和澳大利亚的野外实验数据进行比较,表明该模型具有较高的可信 度^[3,8,9,12]。但如果将该模型应用于估计中国农业土壤的 N₂O 排放时,有必要与中国现有野外实测数据进行 比较。

在我国,农田 N₂O 排放通量的测定主要有以下地点:河北栾城、沈阳生态所实验地、江苏吴县农科所、 江苏吴县长桥乡、北京郊区、广州(表 2)。测定的方法一般均采用封闭箱式法。除河北栾城的测定持续了一 年,其他地方只观测了作物生长季节的 N₂O 排放量。与国外的同类研究相比较,测定时一个比较明显的问 题是由于采样频率低,一些排放高峰值和高峰期的排放量未能得到很好测定^[13]。在进行模型验证时,由于 对调查地气候资料和土壤性质的资料了解不全,难以对 N₂O 排放通量的全过程的变化进行模拟,只对于原 作者对全年的估计值与我们的 DNDC 区域模型的估算结果进行比较。如果它们能够较好的符合,DNDC 模 型就可以被用来估算中国农业土壤 N₂O 年排放量。

1.4 模拟实验设计

在以前的模型灵敏度分析和验证过程中,已经证明土壤有机质对 N₂O 的估算结果影响最大^[9]。因此, 根据各县土壤有机质含量的最大值和最小值,分别用 DNDC67 模型估算了全国各县各土地利用类型的农 田土壤 N₂O 排放量范围,得出平均值。

对于全国农田土壤 N₂O 排放现状的估计,气温和降水资料取 1990 年的,各种作物播种面积和化肥使 用量也取 1990 年的。假定作物残茬有 20%留在农田中,农家肥使用量取按家畜饲养量计算的排泄物量的 20%。耕作方式按现有一般耕作制度。

为了分析方 過 相高 和农田施肥对全国 N₂O 排放通量分布格局的影响,考虑了以下几种情况 (Scenario): 气温升高 2 C 和 4 C, 化肥使用量减少到 0、50% 和增加 1 倍。然后, 再将以县为单位计算出的气 温升高和施肥量变化后的农田 N₂O 排放量与现状排放量相比较。通过 ArcView 制图,得出气温升高和施 肥量变化对农田 N₂O 排放量影响的区域差异。

2 结果与讨论

2.1 DNDC 模型的模拟结果与实测结果的比较

从表 3 可以看出,河北栾城、沈阳和江苏吴县的农田中 N₂O 年排放量实测结果处于模拟结果的范围之 内。北京的实测结果是模拟结果的 $6\sim 9$ 倍,这可能是因为野外实测时间正好是北京最热的一段时间(北京的水稻种植期为 6~9 月份),再加上稻田周期性的泡水是土壤水分大大增加,这些都有利于土壤的 N₂O 排 放。用这段时间的排放通量势必过大估计全年的排放通量。广州的测定值本身变化范围很大(1.40~54.6 $kg \cdot hm^{-2} \cdot a^{-1}$),难以与模拟结果进行有效的比较。

观测地点 Location	经纬度 Latitude longitude	观测时间 Time	作物类型 Crops	施肥量 Fertilizer (kg N・km ⁻²)	N_2O 平均 排放通量 Mean N_2O emission (N μ g • m ⁻² • h ⁻¹)	N ₂ O 年 排放总量 Annual N ₂ O emission (N kg•hm ⁻² •a ⁻	参考 文献 Source
河北栾城	37°53′ N 114°41′ E	1992-09-25 1993-09-21	小麦-玉米	0	2	0.93	
				300	18.5	1.62	14
				307.7**	24.2	2.11	
沈阳应用生 态所实验地	41°32′ N 123°23′ E	0307~11-7	水稻	172		1.63	15
			大豆	35	0.6-203.6	1.68	16
			玉米	350	$-7.6 \sim 348.9$	4.52	
江苏吴县 农科所	31°26′ N 120°40′ E	1992-07-13~ 1992-11-29		0	34.6	3.03	
			992-07-13~ 1992-11-29 水稻	207	34.6	4.49	17
				311	51.3	4.97	
				207***	69	6.04	
江苏吴县 长桥乡	31°26′ 120°40′ E	6′ 1993-06-13~ 0′E 1993-10-28		0	30.5	2.67	
				207	65.6	5.75	
				207 * * *	107.3	5.75	
北京郊区	39°57′ N 116°33′ E	1992-07~ 1992-10	水稻	125	57	4.99	12
		1993	水稻	125	52	4.55	
广州	23°13′ N	1994	水稻		16	1.4	
	113°22′E	1995	水稻		624	54.66	

表 2 中国农田生态系统 N₂O 排放通量测定结果 Table 2 N₂O emissions from agro-ecosystems measured in China

*河北栾城和沈阳应用生态所实验地的年排放量为原作者估计值,其他为平均排放通量估算值;***7.7 kg N 来自有机 **肥**;***施用15 t/hm² 有机肥;****该实验施用硫酸铵肥料。

表 3 DNDC 模型的现状模拟结果与实测结果比较 2.2 中国农田 N₂O 排放分布格局

Table 3 Comparison of N₂O emission between DNDC model

estimation and field measurement

Location 测定结果 Measured 模拟结果 Modeled 河北栾城 1.62~2.11 1.7 \sim 2.3 沈阳 1.63~4.52 2.0 \sim 4.6 江苏吴县 4.55~5.75 4.6~13.1 北京 $4.55 \sim 4.99$ $0.5 \sim 0.8$ 广州 1.40~54.66 7.1~7.8

根据 DNDC67 模型估计,我国农业土壤 N₂O 排 放总量为 0.31(0.18~0.44)Tg N·a⁻¹,平均排放通 地点 N₂O 年排放总量 Annual emission(N kg/(hm². a)) 量为 3.58 kg N • hm⁻² • a⁻¹。该估计和 Xing 等利用 IPCC 方法估计的结果^[18](0.398 Tg N·a⁻¹)差异不 大。

> 中国农田N₂O排放量在华北和西北干旱、半干 旱、半湿润地区较低(图 2),大部分低于 $5 \text{ kg} \cdot \text{N}/(\text{hm}^2 \cdot a)$ 。在南方湿润地区较高,大部分 N₂O 排放量高于 5 kg N/(m² • a),甚至达 20 kg N/

 $(m^2 \cdot a)$, 中国反教振 排放量具有3个中心:川西地区、东北地区和东南沿海。前2个中心的形成与土壤 有机质的含量较高有关。川西和东北地区,由于气温低,气候湿润,土壤有机质分解较慢,受人类活动影响 的历史较短,土壤有机质含量普遍较高。有机质的分解提供了大量土壤氮素,这些氮素在硝化反硝化过程 中释放出 N₂O。东南沿南地区,是我国主要粮食产区,集约经营的耕作方式向土壤施入大量的化肥,即输入 大量氮。在高温高湿的气候条件下,土壤的硝化和反硝化作用活跃,产生了较多的 N₂O。

2.3 气温升高和施肥对中国农田 N₂O 排放分布格局的影响

温度升高会影响土壤的微生物活动,促进硝化和 反硝化细菌的生长和繁殖,增加土壤中 N₂O 的排放。温 度的升高,还会强烈地影响到调节大气与土壤间气体 交换的许多物理化学过程^[19,20],。当温度升高后,N₂O 排放通量会增加;温度升高越多,排放通量的增加越 大。但是不同地区的农田土壤的 N₂O 排放通量对温度 升高的反映有明显差异(图 3)。总的趋势是,N₂O 排放 通量的增加幅度从西北向东南增加。根据模型估算,温 度升高 2 C 时,全国农田土壤的 N₂O 排放总量增加 7.9%,增加量大于 10%的县市主要集中在我另东南地 区。当温度升高 10℃时,增加量大于 20%的县市也是

2℃ (a)和方分数据

图 2 中国农业土壤 N₂O 排放通量的分布等值线 Fig. 2 Contour of N₂O flux from agricultural soil in China

我国东南地区最多。这是因为,在西北地区,由于气候干旱,N₂O排放通量主要受土壤水分和氮肥施用量的限制,对温度升高的反映不敏感。而东南区,降水充沛,温度升高会促进微生物的生长和土壤的硝化反硝化 作用,增加土壤中 N₂O 的排放。

根据模型估算,当不使用氮肥和氮肥施用量减少一半时,全国农业土壤的 N_2O 排放量将会分别减少 39%和 22%。当施肥量增加一倍时,全国农业土壤的 N_2O 排放通量将会增加 55%。氮肥施用量的变化对土 壤 N_2O 排放通量的影响,因地区而异(图 4)。当施肥量减少时,从西北向东南,土壤 N_2O 排放通量减少的幅 度增加。施肥量为 0 时,我国东部的大部分地区 N_2O 的排放量将减少 10%以上,东南部大部分地区将减少 20%~30%以上。施肥量减少 50%时,我国东南部大部分地区将减少 10%~20%以上。无论施肥量减少为 0 还是减少 50%,我国西部地区的 N_2O 的排放量的减少量都不足 10%。当施肥量增加 1 倍时,土壤 N_2O 排 放通量的增加幅度从西北向东南增加,西部大部分地区的 N_2O 的排放量增加不足 25%,而东南部大部分

图 3 温度升高 2°C(a)和 4°C(b)后中国农业土壤 N₂O 排放通量变化量(%)分布图

Fig. 3 Distribution of change (%) in N₂O emission from agricultural soil in China under the rise of temperature of

地区的 N₂O 的排放量将增加 25%以上。这说明,从西北向东南,由于气候的变化,特别是湿润指数的变化, 对施肥量变化所造成的土壤 N₂O 排放通量的变化影响较大。在湿润地区,施肥增加,为硝化反硝化细菌提 供更多 N 源,会产生较多的 N₂O。而干旱地区,尽量土壤中的氮因施肥而增加,但由于水分限制,硝化反硝 化过程难以随土壤中氮素增加而很快增加。

图 4 施肥量变化后中国农业土壤 N₂O 排放通量变化量(%)分布图:(a)不施肥,(b)施肥量减少一半,(c)施肥量加倍。

Fig. 4 Distribution of change(%)in N₂O emissio from agricultural soil in China under applying different amount of fertilizer:(a)No fertilizer,(b)fertilizer reduced by a half,(c)fertilizer doubled.

3 结论

(1)通过与实际观测实验结果比较说明,基于土壤硝化和反硝化过程的 DNDC 模型能够较好地反映我 国农田土壤的 N₂O 排放通量,可以用来估算中国农田土壤 N₂O 的排放通量。

(2)通过对目前我国农田土壤 N_2O 排放通量的估算,发现我国农田土壤 N_2O 排放通量有较明显的地 区差异,西北地区较低,东南地区较高。全国存在 3 个排放量相对较高的中心:东南沿海、东北地区和川西 地区。

(3)利用 DNDC 模拟发现,无论温度升高,还是施肥量变化,对我国农田土壤 № 0 排放通量的影响,都 存在区域差异,表现为东南地区的变化幅度较西北地区大,这可能与我国气候的干湿变化有较密切的关 系。

参考文献

- Rodhe H. A comparison of the contribution of various gases to the greenhouse effect. Science, 1990, 243:1217~1219.
- [2] Mosier A and Kroeze C. A new approach to estimate emissions of nitrous oxide from agriculture and its implications for the global N₂O budget. Global Change Newsletter, 1998, No. 34, Sweden, IGBP.
- [3] Frolking S E, Mosier A R, Ojima D S. et al. Comparison of N₂O emissions from soils at three temperate agricultural sites; Simulations of year-round measurements by four models. Nut. Cycling in Agroecosystems, 1998, 52:77~105.
- [4] Engel T and Priesack E. Expert-N.a building block system of nitrogen models as a resource for advice, research, water management and policy. In: Eijsackers H J P and Hamers T eds. Integrated Soil and Sediment Research. A Basis for proper Protection. Kluwer Academic Pulishers, 1993. 503~507.
- [5] Pottor C S, Riley R H and Klooster S A. Simulation modeling of nitrogen trace gas emissions along an age gradient of tropical forest soils. *Ecological Modeling*, 1997, 97:179~196.
- [6] Parton W J, Mosier A R, Ojima D S, et al. Generalized model for N₂ and N₂O production form nitrification and denitrification for Mathematical Cycles, 1996, **10**:401~412.
- [7] Li C, Frolking S and Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall events, 1. Model

structure and sensitivity. J. Geophys. Res. , 1992, 97:9759~9776.

- [8] Li C, Frolking S and Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall events, 2. Model applications. J. Geophys. Res., 1992, 97:9777~9783.
- [9] Li C, Narayanan V and Harris R C. Model estimates of nitrous oxide emissions from agricultural lands in the United States. *Global Biogeochem Cycles*, 1996, 10: 297~306.
- [10] 熊 毅.中国土壤图集.北京:中国地图出版社,1987.
- [11] 张福春,王德辉,丘宝剑.中国农业物候图集.北京:科学出版社,1987.
- [12] Wang Y, Meyer C P and Galbally I E. Comparisons of field measurements of carbon dioxde and nitrous oxide fluxes with model simulations from a legume pasture in southeast Australia. J. Geophys. Res., 1997, 20:28013~28024.
- [13] Khalil M A K, Rasmussen R A, Shearer M J, et al. Emission of metheme, nitrous oxide, and other trace gases from rice fields in China. J. Geophys. Res., 1998, 103:25241~25250.
- [14] 曾江海,王智平,张玉铭,等.小麦-玉米轮作期土壤排放 N₂O 通量和总量估算.环境科学,1995,16:32~35.
- [15] 陈冠雄,黄国宏,黄 斌,等.稻田 CH4 和 N2O 的排放及养萍和施肥的影响.应用生态学报,1995,6:378~382.
- [16] 黄国宏,陈冠雄,吴 杰,等.东北典型旱作农田 N_2O 和 CH_4 的排放通量研究.应用生态学报,1995,6:383~386.
- [17] 徐 华,刑光熹,张汉辉,金继生.太湖地区水田土壤 N₂O 排放通量及其影响因素.土壤学报,1995,**32**(增刊): 144~149.
- [18] Xing G X. N₂O emission from cropland in China. *Nutrient Cycling* in Agroecosystems, 1998, **52**:249~254.
- [19] Williams E J, Hutchinson Eand Fehsenfeld F C. NO_x and N₂O emissions from soil. Global Biogeochem. Cycles, 1992,6:351~388.
- [20] Bouwman A F, Van der Hoek K W and Olivier J G J. Uncertainties in the global source distribution of nitrous oxide. J. Geophys. Res. ,1995,100:2785~2800.

