放射性钴在模拟水稻田中的迁移模型

孙志明1,陈传群1,王寿祥1,王继延2

(1. 浙江大学原子核农业科学研究所,杭州 310029;2. 华东师范大学数学系,上海 200062)

摘要;研究了放射性钴(6°Co)在模拟水稻田中的迁移、消长的动力学模型。结果表明,水稻田表水中5°Co浓度随时间延长单调降低;水稻植株中6°Co浓度在经历一最大值后下降,其各部位中6°Co浓度大小顺序是;稻根>稻草≫稻壳>糙米;各处理土壤中6°Co浓度随距表层深度按单项指数衰减,不同处理的土壤中6°Co的平均浓度则与时间负相关。5°Co在田表水、土壤、水稻植株中浓度的大小顺序是:水稻植株>土壤>田表水。

关键词:钴-60;水稻;浓集系数;迁移模型

A transference model of radioactive cobalt in simulated paddy

SUN Zhi-Ming¹, CHEN Chuan-Qun¹, WANG Shou-Xiang¹, WANG Ji-Yan² (1. Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China; 2. Department of Mathematics, East China Teacher's University, Shanghai, 200062, China)

Abstract: The dynamic model of transference, accumulation and disappearance of active cobalt in the simulated paddy were studied. The results showed that concentration of ⁶⁰Co in paddy water was decreased monotonously with time. The concentration of ⁶⁰Co in rice plant was increased to peak a period and then declined, and the magnitude of concetration was:root>straw>husk>brown rice. The concentration of ⁶⁰Co in the soil for idendical treatments presents an individual exponential declining with depth of soil; The average concentration of ⁶⁰Co in the soil for differint treatments presents declining with time. The magnitude of concentration of ⁶⁰Co in the each parts was:rice>soil>water.

Key words: coblat-60; rice; concentration factor; transference

文章编号:1000-0933(2001)05-0938-04 中国分类号:S152,X591 文献标识码:A

由于核电站反应堆中子的作用,反应堆中结构材料铁(59Fe)、镍(58Ni)分别生成了放射性50Co、58Co,但50Co具有更为重要的毒理学意义。本研究采取模拟污染物的核素示踪技术研究了50Co进入田水后,在田水-土壤-水稻中的迁移和积累动态,以为评价其对环境可能产生的影响提供依据。

1 材料与方法

1.1 6ºCo 的转化与配制

所用示踪剂⁶⁰Co 为铝壳包装的 ∮1mm×2mm 的钴粒(点源),由中国原子能研究院提供,出厂时(1996-10-29)比活度为 3.19×10⁷Bq/mg。使用前转化为⁶⁰CoCl₂。方法是,加入适量稀盐酸,于~80℃水浴中加热,待其缓慢溶解后转移至 100ml 容量瓶中,用水定容,使用时稀释成比活度为 3.25×10⁵Bq/ml 的工作母液,其反应式如下:

⁵⁰Co + 2HCl ~ 80℃ 水浴 ⁶⁰CoCl₂ + H₂ ↑

1.2 试验方法

采用 \$25×25cm 塑料盆体。内装事先拌入基肥 2.7g(NH4)₂SO4、32gKH2PO4 风干的杭州华家池小粉土

基金项目:国家自然科学基金(39570149)资助项目

收稿日期:1999-03-22:修订日期:2000-04-10

作者简介:孙志明(1960~)男,山东海阳人,实验师,从事核素示踪和辐射应用研究.

8.0kg,其理化参数请见文献[1]。灌水(表面水约 1500ml)。每盆种植水稻(品种:加育 293)3 丛,每丛 5 株。于插秧后 1、3、6、11、20、29、38、47、56、65 和 74d,一次性由表水引入等量的⁶⁰CoCl₂ 水液(3、25×10⁵Bq),各 3 只重复. 最后一次引入距收获 Id。于是⁶⁰Co 引入时间距收获天数相应为 74、65、56、47、38、29、20、11、6、3 和 1d。

于水稻成熟时一次性收获、取样。取样次序是,取田表水适量;收割水稻地上部,分草、稻谷;用半筒式取土器,每盆取3只土柱,然后约每3cm纵向分割,计7段;最后取出稻根,用水洗净。稻谷烘干后脱壳分谷壳和糙米。

经过上述初步处理后,田表水采用挥发法,土壤采用干粉法,水稻各部位采用灰化法(在马弗炉中于~800℃灰化 8h),分别测定各样品中⁶⁰Co 活度。所有测样均 3 只重复。测定的相对标准差不大于 10%。

2 结果与分析

2.1 6ºCo 在水-土壤-水稻系统各组分中的消长动态

⁶⁰Co 进入田表水后,便被土壤强烈吸附^[2],水稻植株主要通过根部从土壤中吸收⁶⁰Co,然后运转至地上部. ⁶⁰Co 在系统各组分中浓度的动态变化如表 1 所示,土壤中⁶⁰Co 浓度系指整盆土壤的平均浓度,时间表示 60 引入距收获的天敷(下同)。

Table 1 The dynamic change of **Co in the different parts of simulated paddy

表 1 模拟水稻田各组分中46Co浓度的动态变化

时间 Time(d)	1	3	6	11	20	29	38	47	56	65	74
田表水 Water	1.49	1. 02	1.06	1.25	0. 35	0. 23	0. 34	0, 31	0. 17	0. 26	0. 16
$(\mathrm{Bq/g})$	1.40	1.02	1.00	1, 20	0. 33	0. 20	0.31	0.31	0.17	0. 20	0.10
土壤 Soil	44.6	29. 7	44.0	32.9	33. 4	53.6	37. 7	32. 1	19. 4	20. 4	16.5
(Bq/g dry sample)	44.0	23.1	44.0	24.3	30. 4	55. 6	31.1	3£- I	13. 4	ZU- 4	16. 5
水稻植株 Rice	ee 1	20.0	54 1	40.0	110 1	102 2	120 5	201 1	261 6	g10 1	400 3
(Bq/g dry sample)	55. 4	39.0	54. 1	48. 0	113-1	193. 3	17 9. 5	291· 1	201-0	510.1	490.3

测定结果表明,⁶⁰Co 在系统各组分的浓度大小顺序是:水稻植株(干样)>土壤(干土)>田表水。但由于土壤质量(8.0kg/盆)远大于水稻植株(~100g/盆干样),放进入水稻田中的⁶⁰Co 主要滞留于土壤;而就水稻各部位而言,⁶⁰Co 浓度大小为:根>稻草>稻壳>糙米(表 2)。由于作物主要通过根部从土壤中吸收⁶⁰Co,因此一般是地下部⁶⁰Co 浓度远大于地上部^[5],本研究结果与此一致。其次,相对于水稻的其它部位,糙米中⁶⁰Co 的浓度较低,但在 t<11d 食用才是安全的^[4],t>11d,则需经历一定的安全等待期才可食用。

表 2 水積各部位中4Co 浓度(Bq/g 干样)的动态变化

Table 2 The dynamic change of concentration of **Co in the different parts of rice(Bq/g dry smaple)

时间 Time(d)	1	3	6	11	20	29	38	47	56	65	74
看根 Root	387.0	515. 2	658.7	540-6	750. 9	1154-6	923. 7	1659.9	1853- 0	2904.2	2874.8
稻草 Straw	64. 4	30.4	52. 9	51.5	169.4	280.8	252- 9	456.6	374-0	722.6	677.1
相壳 Husk	1.16	0.64	0. 25	0. 36	0.79	1.16	0.85	1.69	3. 47	2. 77	3.39
港米 Brown rice	0. 03	0. 08	0. 10	0.10	0.50	0.60	0.51	1. 19	2.12	1.72	1. 62

其次,随着距收获时间的延长,田表水中⁶⁰Co 浓度急速地下降;土壤中的⁶⁰Co 浓度也基本上呈下降趋势。这是由于⁶⁰Co 在土壤中较易被吸附、固定或螯合。被吸附的⁶⁰Co 由交换态和非交换态组成,由于土壤处于淹水状态,加之土壤呈酸性(pH6.0),故除了水溶性钴之外,交换态钴及有机螯合物可能发生浸提和溶解作用,使得钴有向下垂直迁移的趋向,也使得水稻根部能不断地从土壤中吸收钴而运转至其它部位。实际上,本研究⁶⁰Co 系由田水引入,若是因某种因素(比如核事故)⁶⁰Co 进入土壤,则它在水稻各部位中的积累要低得多^[5]。就是说进入水体的⁶⁰Co 的潜在危害要比滞留于土壤中的危害大得多。这里应说明,由于试验

是在露天下进行的,因雨水等关系,致田表水常有溢出,而致⁶⁰Co 在系统中有所损失,这也是随时间延长, 土壤中⁶⁰Co 的平均浓度下降的又一原因。

2.2 °Co 在土壤中的垂直分布

各处理的土壤中60Co浓度(Bq/g干土)探深度分布的测定结果列于表 3。

表 3 40Co 在土壤中的委直分布及其与时间相关性

Table 3 The vertical distribution of 60Co in the soil as a function of time

时间			回归方程					
Time(d)	0~3	3~6	6~9	9~12	12~15	15~18	18~21	Regressive equation
1	256- 4	36.8	7- 3	2. 2	2. 1	1.0	6. 7	101. 4e ^{-0. 2287x}
3	152.6	40. 5	5.0	1.7	1.8	2. 9	3. 1	74. $3e^{-0.2122x}$
6	262. 4	29. 9	5- 4	5.1	1.0	1.6	2.5	$117.2e^{-0.2535x}$
11	200.0	19. 2	4. 9	2.0	0.7	1.2	2. 4	74. $9e^{-0.2447x}$
20	180- 5	27.3	10.5	7.7	3. 1	1.1	3- 6	114. 4e -0. 2288x
29	312.6	28. 2	8. 1	5.7	3. 7	5.4	11-2	86. $2e^{-0.1655x}$
38	211.0	27. 1	9. 4	4.7	2.6	5. 9	3. 1	95. $0e^{-0.2004x}$
47	173. 3	15. 5	8- 7	4. 2	6. 4	11.7	5. 2	53. 6e-0.1344x
56	97.8	15. 2	8- 6	5- 6	2. 7	2. 0	3. 8	53. 8e-0. 1761x
65	76. 6	17. 3	13.2	24.4	2.8	3.0	5.6	59. $7e^{-0.1522x}$
74	89. 1	11.6	6. 4	3- 6	2.0	1.5	1.3	48. $2e^{-0.2023x}$

由表 3 可见,对同一处理,土壤中 40 Co 的浓度随深度急速地降低。回归分析表明,土壤中 40 Co 浓度随高表层深度 x 呈单项指数负相关,相关系数在 $-0.6952\sim-0.9302$ 之间,它们在 $\alpha=0.10\sim0.01$ 水平上显著。各回归方程一并列于表 3 右侧。

应该指出,大多数处理的底层土壤中⁶⁰Co 浓度有升高的趋势,这主要是由于在淹水条件下,上层土壤中的⁶⁰Co 不断向下迁移、积累的缘故。

2.3 水稻对**Co的浓集作用

表 1 已经表明,相对于田表水和土壤,水稻植株对土壤中钴的浓集作用与 60 Co 引入距收获时间成正相关,其浓集系数 $^{[6]}$ Ks 由 1d 的 1.24 至 74d 的 29.72,与其相应的糙米对土壤中钴的浓集系数则为 7×10^{-4} 和 0.1。至于对田表水中的 Kw 值,水稻植株由 1d 的 37.2 至 74d 的 3064.4,糙米则相应为 0.02 和 10.1;实际上,本试验条件下,当 t>20d 后,糙米的 Kw 值皆大于 1。

2.4 5ºCo 在水-土壤-水稻中的迁移模型

⁶⁰Co 在水-土壤-水稻系统中迁移、输运的动态过程可用封闭三分室模型原理描述。通常认为,示踪剂(⁶⁰Co)的迁移服从一级速率过程,当作一定简化,便得各分室(如图)中⁶⁰Co 量对时间的变化率相应为:

$$\frac{dq_1}{dt} = -(k_{12} + k_{13})q_1 + k_{21}q_2$$

$$\frac{dq_2}{dt} = k_{12}q_1 - (k_{21} + k_{23})q_2$$

$$\frac{dq_3}{dt} = k_{13}q_1 + k_{23}q_2$$

式中 k_{ij} 表示⁶⁰Co 由第 i 分室向第 j 分室转移的速率,可视为数。利用初始条件 t=0, $q_1=q_1$ 。0, q_2 ,0= q_3 ,0=0,以及 q_1 0= $\sum_{q_i=\hbar$ 数, $q_i=m_iC_i$,此处 m_i 为第 i 分室的质量,视作常数, C_i 为第 i 分室中⁶⁰Co 的浓度。解上微分方程组得:

$$C_{1} = \frac{C_{1,0}}{\beta - \alpha} [(\gamma - \alpha)e^{-\alpha} - (\gamma - \beta)e^{-\beta}]$$

$$C_{2} = \frac{m_{1}C_{1,0}k_{12}}{m_{2}(\beta - \alpha)} [e^{-\alpha} - e^{-\beta}]$$

$$C_3 = \frac{m_1 C_{1,0}}{m_3} \left\{ 1 - \frac{k_{13} - \beta}{\alpha - \beta} e^{-\alpha} + \frac{k_{13} - \alpha}{\alpha - \beta} e^{-\beta} \right\}$$

中

$$\alpha = \frac{1}{2} \left[\gamma + k_{13} + k_{12} - \sqrt{(k_{13} + k_{12} - \gamma)^2 + 4k_{12}k_{21}} \right],$$

$$\beta = \frac{1}{2} \left[\gamma + k_{13} + k_{12} + \sqrt{(k_{13} + k_{12} - \gamma)^2 + 4k_{12}k_{21}} \right],$$

$$\gamma = k_{23} + k_{21}$$

利用表 1 的数据和初始条件 $C_{1.0}=216.7$ Bq/g 水以及系统各组分的质量 $m_1=1500$ g, $m_2=8000.0$ g, $m_3=800\sim120$ g(干重),取 $m_3=100$ g(干重),经计算机拟合得 $k_{12}=5.2981$ d⁻¹, $k_{13}=0.0302$ d⁻¹, $k_{21}=0.0101$ d⁻¹, $k_{23}=0.0017$ d⁻¹,于是便得各分室中⁶⁰Co 浓度随时间变化的数学模式为:

田表水
$$C_1 = 40.61(0.0100e^{-0.001753t} + 5.3266e^{-5.3384t})$$

土 壤 $C_2 = 40.3(e^{-0.001753t} - e^{-5.3384t})$
水 稻 $C_3 = 3250.5(1-0.9947e^{-0.001753t} - 0.0053e^{-5.3384t})$

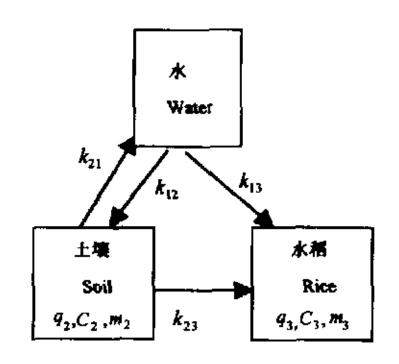


图 1 封闭三分室

Fig. 1 A closed three-compartment model

3 讨论

上述模型较好地描述了¹⁰Co 在水稻田中的行为归趋。除了田表水之外,理论值与实验值误差大多在 30%以内;由于 本试验系在露天网室中进行,进入梅雨季节(t>29d)后雨水较多,几次盆水溢出,致使⁶⁰Co 浓度值明显低于理论值。

4 主要结论

- 4.1 进入田水中的⁶⁰Co 将在整个系统中发生迁移和分配。系统各组分中⁶⁰Co 浓度与时间关系由多项指数描述,其中田表水中⁶⁰Co 浓度单调降低,土壤、水稻植株中的⁶⁰Co 浓度均在经历最大值后下降。
- 4.2 田表水中⁴⁰Co 浓度远低于土壤和水稻植株;系统中的⁶⁰Co 主要为土壤所积累,并主要积累于土壤表层。
- 4.3 水稻植株对土壤和水中的⁶⁰Co 均有一定的浓集作用;而糙米中⁶⁰Co 浓度远低于土壤,但糙米能浓集水中的⁶⁰Co。

参考文献

- 「1] 陈传群,钟伟良,王寿祥,等,放射性铈在模拟水稻田中的行为. 核技术,1997,20(1):56.
- [2] 冯永红,陈传群,王寿祥,等,40Co在土壤、矿物质中的吸附及在菜豆-土壤系统中的迁移,中国核科技报告,CNIC-01238,北京,原子能出版社,1998.5~6.
- [3] 王 云,魏复盛,土壤环境元素化学,北京;环境科学出版社,1995.78.
- [4] 中华人民共和国国家标准总局、国家标准,食品中放射性物质限制量标准,GBn54-81,1982:257.
- [5] Алексахин Р М, Буфагин О И, Маликов В Г и др. Радиоэкология Орошаемого Земледелия, с. 117, Энергоатомиздат, Москва, 1985.
- [6] 魏切尔 F W, 舒尔茨 V. 俞誉福, 唐静娟, 茅云译著, 放射生态学, 第一卷, 北京;原子能出版社, 1988, 282.

