放射性钴在模拟水稻田中的迁移模型

孙志明1,陈传群1,王寿祥1,王继延2

(1. 浙江大学原子核农业科学研究所,杭州 310029;2. 华东师范大学教学系,上海 200062)

摘要;研究了放射性钴(⁶⁰Co)在模拟水稻田中的迁移、消长的动力学模型。结果表明,水稻田表水中⁶⁰Co浓度随时间延长 单调降低;水稻植株中⁶⁰Co浓度在经历一最大值后下降,其各部位中⁶⁰Co浓度大小顺序是;稻根>稻草≫稻壳>糙米;各 处理土壤中⁶⁰Co浓度随距表层探度按单项指数衰减,不同处理的土壤中⁶⁰Co的平均浓度则与时间负相关。⁶⁰Co在田表 水、土壤、水稻植株中浓度的大小顺序是:水稻植株>土壤>田表水。

关着词;钻-60;水稻;浓集系数;迁移模型

A transference model of radioactive cobalt in simulated paddy

SUN Zhi-Ming¹, CHEN Chuan-Qun¹, WANG Shou-Xiang¹, WANG Ji-Yan² (1. Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China; 2. Department of Mathematics, East China Teacher's University, Shanghai, 200062, China)

Abstract: The dynamic model of transference, accumulation and disappearance of active cobalt in the simulated paddy were studied. The results showed that concentration of ⁶⁰Co in paddy water was decreased monotonously with time. The concentration of ⁶⁰Co in rice plant was increased to peak a period and then declined, and the magnitude of concetration was:root>straw>husk>brown rice. The concentration of ⁶⁰Co in the soil for idendical treatments presents an individual exponential declining with depth of soil; The average concentration of ⁶⁰Co in the soil for differint treatments presents declining with time. The magnitude of concentration of ⁶⁰Co in the soil straw because the soil for differint treatments presents declining with time. The magnitude of concentration of ⁶⁰Co in the soil for differint treatments presents declining with time. The magnitude of concentration of ⁶⁰Co in the each parts was:rice>soil>water.

Key words:coblat-60;rice;concentration factor;transference

文章编号:1000-0933(2001)05-0938-04 中国分类号:S152,X591 文献标识码:A

由于核电站反应堆中子的作用,反应堆中结构材料铁(⁵⁹Fe)、镍(⁵⁸Ni)分别生成了放射性⁶⁰Co、⁵⁸Co,但 ⁶⁰Co具有更为重要的毒理学意义。本研究采取模拟污染物的核素示踪技术研究了⁶⁰Co进入田水后,在田水-土壤-水稻中的迁移和积累动态,以为评价其对环境可能产生的影响提供依据。

1 材料与方法

1.1 ⁶⁰Co 的转化与配制

所用示踪剂[®]Co为铝壳包装的 ∮lmm×2mm 的钴粒(点源),由中国原子能研究院提供,出厂时(1996-10-29)比活度为 3.19×10⁷Bq/mg。使用前转化为[®]CoCl₂。方法是,加入适量稀盐酸,于~80℃水浴中加热, 待其缓慢溶解后转移至 100ml 容量瓶中,用水定容,使用时稀释成比活度为 3.25×10⁸Bq/ml 的工作母液, 其反应式如下:

⁵⁰Co + 2HCl <u>~ 80℃ 水浴</u> ⁶⁰CoCl₂ + H₂ ↑

1.2 试验方法

采用 ∮25×25cm 塑料盆钵。内装事先拌入基肥 2.7g(NH₄)₂SO4、32gKH₂PO4 风干的杭州华家池小粉土

基金项目:国家自然科学基金(39570149)资助项目

收稿日期:1999-03-22:修订日期:2000-04-10

作者简介:孙志明(1960~)男,山东海阳人,实验师,从事核素示踪和辐射应用研究.

8.0kg,其理化参数请见文献[1]。灌水(表面水约1500ml)。每盆种植水稻(品种:加育293)3 丛,每丛5 株。 于插秧后1、3、6、11、20、29、38、47、56、65 和 74d,一次性由表水引入等量的⁶⁰CoCl₂ 水液(3、25×10⁵Bq),各 3 只重复.最后一次引入距收获1d。于是⁶⁰Co引入时间距收获天数相应为74、65、56、47、38、29、20、11、6、3 和1d。

于水稻成熟时一次性收获、取样。取样次序是,取田表水适量;收割水稻地上部,分草、稻谷;用半筒式 取土器,每盆取3只土柱,然后约每3cm纵向分割,计7段;最后取出稻根,用水洗净。稻谷烘干后脱壳分谷 壳和糙米。

经过上述初步处理后,田表水采用挥发法,土壤采用干粉法,水稻各部位采用灰化法(在马弗炉中于~ 800℃灰化 8h),分别测定各样品中⁶⁰Co 活度。所有测样均 3 只重复。测定的相对标准差不大于 10%。

2 结果与分析

2.1 [∞]Co在水-土壤-水稻系统各组分中的消长动态

⁶⁶Co进入田表水后,便被土壤强烈吸附^[2],水稻植株主要通过根部从土壤中吸收⁶⁰Co,然后运转至地上 部。⁶⁶Co在系统各组分中浓度的动态变化如表1所示,土壤中⁶⁶Co浓度系指整盆土壤的平均浓度,时间表 示⁶⁶Co引入距收获的天数(下同)。

表 1 模拟水稻田各组分中⁴⁴Co浓度的动态变化

				_							
时间 Time(d)	1	3	6	11	20	29		47	56	65	74
田表水 Water		1.02	1.06	1, 25	0.35	0.23	0. 34	0.31	0, 17	0.26	0, 16
(Bq/g)	1.40	1.02	1.00	1, 20	0.33	0.20	V. 31	0.31	V. I.	0.20	01 10
土壤 Soil	44.6	29. 7	44.0	32, 9	33. 4	53.6	37. 7	32, 1	19. A	20. 4	16. 5
(Bq/g dry sample)	77.0	20.1	11.0	00.0	JU - 1	0010	0111	0.2. 1	10. 1	20. 4	10.0
水稻植株 Rice	55 4	30 0	54 1	48.0	112 1	102 3	170 5	201 1	261 6	510.1	400 3
(Bq/g dry sample)		JJ- V	94.1	40° U	112-1	133.3	11340	471.1		JIV. I	430+0

Table 1 The dynamic change of "Co in the different parts of simulated paddy

测定结果表明,⁶⁰Co在系统各组分的浓度大小顺序是:水稻植株(干样)>土壤(干土)>田表水。但由 于土壤质量(8.0kg/盆)远大于水稻植株(~100g/盆干样),放进入水稻田中的⁶⁰Co主要滞留于土壤;而就 水稻各部位而音,⁶⁰Co浓度大小为:根>稻草>稻壳>糙米(表 2)。由于作物主要通过根部从土壤中吸收⁶⁰ Co,因此一般是地下部⁶⁰Co浓度远大于地上部^[5],本研究结果与此一致。其次,相对于水稻的其它部位,糙 米中⁶⁰Co的浓度较低,但在 *t*<11d 食用才是安全的^[4],t>11d,则需经历一定的安全等待期才可食用。

表 2 水積各部位中44Co浓度(Bq/g 干样)的动态变化

Table 2 The dynamic change of concentration of "Co in the different parts of rice(Bq/g dry smaple)

时间			~~~~	T 1				47		Ċ.F.	
Time(d)	I	4	0	11	20	29	38	47	20	00	74
看根 Root	387.0	515.2	658.7	540.6	750. 9	1154-6	923. 7	1659.9	1853.0	2904.2	2874.8
稻草 Straw	64.4	30.4	52.9	51.5	169.4	280. 8	252-9	456-6	374.0	722.6	677.1
看売 Husk	1.16	0.64	0- 25	0.36	0.79	1.16	0.85	1.69	3.47	2. 77	3. 39
糙米 Brown rice	0. 03	0. 08	0. 10	0.10	0.50	0.60	0.51	1.19	2.12	1.72	1.62

其次,随着距收获时间的延长,田表水中⁶⁰Co浓度急速地下降;土壤中的⁶⁰Co浓度也基本上呈下降趋势。这是由于⁶⁰Co在土壤中较易被吸附、固定或螯合。被吸附的⁶⁰Co由交换态和非交换态组成,由于土壤处于淹水状态,加之土壤呈酸性(pH6.0),故除了水溶性钴之外,交换态钴及有机螯合物可能发生浸提和溶解作用,使得钴有向下垂直迁移的趋向,也使得水稻根部能不断地从土壤中吸收钴而运转至其它部位。实际上,本研究⁶⁰Co系由田水引入,若是因某种因素(比如核事故)⁶⁰Co进入土壤,则它在水稻各部位中的积累 要低得多^[5].就是说进入水体的¹⁰Co的潜在危害要比滞留于土壤中的危害大得多.这里应说明,由于试验 是在露天下进行的,因雨水等关系,致田表水常有溢出,而致⁶⁰Co在系统中有所损失,这也是随时间延长, 土壤中⁶⁰Co的平均浓度下降的又一原因。

2.2 ¹⁰Co 在土壤中的垂直分布

各处理的土壤中⁶⁰Co浓度(Bq/g 干土)探深度分布的测定结果列于表 3。

表 3 4°Co在土壤中的垂直分布及其与时

Table 3	The vertical	distribution of	••Co in the soil	as a 1	function of t	ime
---------	--------------	-----------------	------------------	--------	---------------	-----

时间			深	度 Depth()		回归方程		
Time(d)	0~3	3~6	6~9	9~12	12~15	15~18	18~21	Regressive equation
1	256.4	36.8	7.3	2.2	2.1	1.0	6.7	$101.4e^{-0.2287x}$
3	152.6	40.5	5.0	1.7	1.8	2. 9	3. 1	74. $3e^{-0.2122x}$
6	262-4	29.9	5.4	5.1	1.0	1.6	2.5	$117.2e^{-0.2535x}$
11	200. 0	19.2	4.9	2.0	0.7	1.2	2.4	74. $9e^{-0.2447x}$
20	180-5	27.3	10.5	7.7	3.1	1.1	3-6	114. $4e^{-0.2288x}$
29	312.6	28.2	8. 1	5.7	3. 7	5-4	11.2	86. $2e^{-0.1655x}$
38	211.0	27.1	9.4	4.7	2.6	5.9	3.1	95. 0e ^{-0.2004x}
47	173.3	15.5	8.7	4.2	6,4	11.7	5.2	53. $6e^{-0.1344x}$
56	97.8	15.2	8-6	5-6	2.7	2.0	3.8	53. $8e^{-0.1761x}$
65	76.6	17.3	13.2	24.4	2.8	3. 0	5.6	59. $7e^{-0.1522x}$
74	89.1	11.6	6.4	3-6	2. 0	1.5	1.3	48. $2e^{-0.2023x}$

由表 3 可见,对同一处理,土壤中⁴⁰Co的浓度随深度急速地降低。回归分析表明,土壤中⁴⁰Co浓度随高 表层深度 x 呈单项指数负相关,相关系数在一0.6952~一0.9302 之间,它们在 α=0.10~0.01 水平上显 著。各回归方程一并列于表 3 右侧、

应该指出,大多数处理的底层土壤中⁶⁰Co浓度有升高的趋势,这主要是由于在淹水条件下,上层土壤中的⁶⁰Co不断向下迁移、积累的缘故。

2.3 水稻对**Co的浓集作用

表1已经表明,相对于田表水和土壤,水稻植株对土壤中钴的浓集作用与⁶⁶Co引入距收获时间成正相 关,其浓集系数^[4]Ks由 1d的 1.24 至 74d的 29.72,与其相应的糙米对土壤中钴的浓集系数则为 7×10⁻⁴

和 0.1.至于对田表水中的 Kw 值,水稻植株由 1d 的 37.2 至 74d 的 3064.4,糙米则相应为 0.02 和 10.1;实际上,本试验条件下,当 t>20d 后,糙米的 Kw 值皆大于 1。

2.4 [∞]Co在水-土壤-水稻中的迁移模型

⁶⁰Co在水-土壤-水稻系统中迁移、输运的动态过程可用封闭三分室模型原理描述。通常认为,示踪剂 (⁶⁰Co)的迁移服从一级速率过程,当作一定简化,便得各分室(如图)中⁶⁰Co量对时间的变化率相应为:

$$\frac{dq_1}{dt} = -(k_{12} + k_{13})q_1 + k_{21}q_2$$
$$\frac{dq_2}{dt} = k_{12}q_1 - (k_{21} + k_{23})q_2$$
$$\frac{dq_3}{dt} = k_{13}q_1 + k_{23}q_2$$

式中 k_{ij} 表示⁶⁰Co 由第 *i* 分室向第 *j* 分室转移的速率,可视为数。利用初始条件 $t=0,q_1=q_{1,0},q_{2,0}=q_{3,0}=0$, 以及 $q_{1,0}=\sum_{q_i}=常数_{i}q_i=m_iC_i$,此处 m_i 为第 *i* 分室的质量,视作常数, C_i 为第 *i* 分室中⁶⁰Co 的浓度,解上 微分方程组得:

$$C_{1} = \frac{C_{1,0}}{\beta - \alpha} [(\gamma - \alpha)e^{-\alpha} - (\gamma - \beta)e^{-\beta}]$$
$$C_{2} = \frac{m_{1}C_{1,0}k_{12}}{m_{2}(\beta - \alpha)} [e^{-\alpha} - e^{-\beta}]$$

$$C_{3} = \frac{m_{1}C_{1,0}}{m_{3}} \left(1 - \frac{k_{13} - \beta}{\alpha - \beta} e^{-\alpha} + \frac{k_{13} - \alpha}{\alpha - \beta} e^{-\beta} \right)$$

$$\exists \Psi$$
$$\alpha = \frac{1}{2} \left[\gamma + k_{13} + k_{12} - \sqrt{(k_{13} + k_{12} - \gamma)^{2} + 4k_{12}k_{21}} \right],$$
$$\beta = \frac{1}{2} \left[\gamma + k_{13} + k_{12} + \sqrt{(k_{13} + k_{12} - \gamma)^{2} + 4k_{12}k_{21}} \right],$$

 $\gamma = k_{23} + k_{21}$

利用表1的数据和初始条件 $C_{1,0} = 216$. 7Bq/g 水 以及系统各组分的质量 $m_1 = 1500g, m_2 = 8000, 0g, m_3$ =800~120g(千重),取m₃=100g(千重),经计算机拟 合得 $k_{12} = 5.2981d^{-1}, k_{13} = 0.0302d^{-1}, k_{21} = 0.0101d^{-1}$, $k_{23} = 0.0017d^{-1}$,于是便得各分室中⁶⁰Co浓度随时间变 化的数学模式为:

田表水 $C_1 = 40.61(0.0100e^{-0.001753t} + 5.3266e^{-5.3384t})$

 $\pm \quad \mbox{$\pounds$} C_2 = 40.3(e^{-0.001753t} - e^{-5.3384t})$

水 稻 $C_3 = 3250.5(1-0.9947e^{-0.001753t}-0.0053e^{-5.3344t})$

3 讨论

上述模型较好地描述了**Co在水稻田中的行为归趋。除了田表水之外,理论值与实验值误差大多在 30%以内;由于本试验系在露天网室中进行,进入梅雨季节(t>29d)后雨水较多,几次盆水溢出,致使⁴⁰Co 浓度值明显低于理论值.

4 主要结论

4.1 进入田水中的5°Co将在整个系统中发生迁移和分配。系统各组分中5°Co浓度与时间关系由多项指数 描述,其中田表水中⁶⁰Co浓度单调降低,土壤、水稻植株中的⁶⁰Co浓度均在经历量大值后下降。

4.2 田表水中**Co浓度远低于土壤和水稻植株;系统中的**Co主要为土壤所积累,并主要积累于土壤表 层.

4.3 水稻植株对土壤和水中的⁶⁰Co均有一定的浓集作用;而糙米中⁶⁰Co浓度远低于土壤,但糙米能浓集 水中的⁶⁰Co.

图 1 封闭三分室

Fig. 1 A closed three-compartment model

参考文献

- [1] 陈传群,钟伟良,王寿祥,等,放射性铈在模拟水稻田中的行为. 核技术,1997,20(1):56.
- [2] 冯永红,陈传群,王寿祥,等,⁴⁰Co在土壤、矿物质中的吸附及在菜豆-土壤系统中的迁移。中国核科技报告,CNIC-01238,北京:原子能出版社,1998.5~6.
- [3] 王 云,魏复盛,土壤环境元素化学,北京;环境科学出版社,1995.78.
- [4] 中华人民共和国国家标准总局,国家标准,食品中放射性物质限制量标准,GBn54-81,1982:257.
- [5] Алексахин Р М, Буфагин О И, Маликов В Г и др. Радиоэкология Орошаемого Земледелия, с. 117, Энергоатомиздат, Москва, 1985.
- [6] 魏切尔 F W, 舒尔茨 V. 俞誉福, 唐静娟, 茅云译著, 放射生态学, 第一卷, 北京, 原子能出版社, 1988, 282.

