CO₂ 增长对杉木中龄林针叶光合生理生态的 影响

张小全¹,徐德应¹,赵茂盛¹,陈仲庐²

(1. 中国林业科学研究院森林生态环境研究所,北京 100091;2. 中国林业科学研究院亚热带林业实验中心,江西 336600)

摘要:通过对 17a 生杉木人工林小枝的活体测定,研究了大气 CO_2 增长对杉木中龄林净光合、呼吸、气孔导度和水分利 用效率等生理生态特性的影响。结果表明,在 CO_2 浓度为 45μ mol/L 左右时,杉木针叶净光合速率比正常大气 CO_2 下提 高 1 倍以上,气孔导度和蒸腾速率有不同程度的降低,水分利用效率提高约 1~2 倍;同时使光补偿点降低,饱和点和光 抑制点提高,光量子效率提高 40%~295%且阳枝大于阴枝,针叶暗呼吸降低 20%~72%。随着 CO_2 浓度的增加,针叶净 光合速率和水分利用效率呈线性上升,约到 45μ mol/L 以后,增加速率减慢,但 CO_2 饱和点可达 116 μ mol/L 以上。杉木针 叶对 CO_2 增长的这种反应,对大气 CO_2 不断增长的条件下杉木生长是有利的,但对其长期反应还有待进一步研究。 关键词; CO_2 增长;杉木;净光合速率;气孔导度;水分利用效率;暗呼吸

The responses of 17-years-old Chinese fir shoots to elevated CO₂

ZHANG Xiao-Quan¹, XU Dei-Ying¹, ZHAO Mao-Sheng¹, CHEN Zhong-Lu¹ (1. The Research Institute of Forest Ecology and Environment, CAF, Beijing 100091, China; 2. Subtropical Experimental Center, CAF, Jianxi Province 336600, China)

Abstract: The net photosynthesis (Pn), transpiration(TR), stomatal conductance(COND), water use efficiency (WUE) and dark respiration (DR) of 17-year-old Chinese fir shoots under ambient and elevated CO₂ conditions were measured with LiCor-6200 Photosynthesis system, and their responses to elevated CO₂ were discussed. It was suggested that compared to the ambient air CO₂ concentration. Pn under 45μ mol/L CO₂ was doubled and COND and TR decreased to some extent, leading to the increase of WUE by $100\% \sim 200\%$; at the same time. DR reduced by $20\% \sim 72\%$ and quantum efficiency increased by $40\% \sim 295\%$; light compensation point deereased while light saturation point and light inhibition point elevated. It was also found that with the increase of CO₂ concentration. Pn and WUE increased linearly until around 45μ mol/L CO₂, the increasing rates reduced, but the CO₂ saturation point for Pn was higher than 117μ mol/L. It was concluded that the increasing CO₂ concentration in the atmosphere would be beneficial to Chinese fir in a short term, but its long term responses are not determined and need to be further studied.

Key words: elevated CO₂; net photosynthesis; transpiration; stomatal conductance; water use efficiency; dark respiration

文章编号:1000-0933(2000)03-0390-07 中图分类号:Q145,Q948 文献标识码:A

由于化石燃料的燃烧和森林的破坏,自工业革命以来,大气中的 CO₂ 浓度从 1860 年的 12.5μmol/L

基金项目:国家自然科学基金资助项目"杉木人工林光合作用尺度转换研究(编号:39770596)和林业部重点资助课 题"江西大岗山森林生态系统定位研究"的基金资助项目

本文得到中国林科院森林生态环境研究所肖文发博士、王雁博士、聂道平副研究员等的大力协助,在此一并致谢。 收稿日期:199700万次次使用日期:1998-07-15

作者简介:张小全(1965~),男,博士,助理研究员。

上升到 1990 年的 15.76μmol/L,目前正以前所未有的速度增长。据估计,在未来的 100 年中,大气中 CO₂ 浓度将增加一倍^[1,2]。大气中 CO₂ 浓度的迅速增加,不但会引起全球变暖和气候变化,而且会对植物,特别 是构成陆地生态系统主体的树木产生最直接的影响。CO₂ 增长对林木光合生理生态的影响,国外进行了大 量的实验研究和报道^[3~17],但多限于农作物和木本苗木,对大树的研究很少。在国内只有对个别木本苗木 的研究^[18],对成年树木的研究还是空白。本文试图通过杉木中龄林针叶的活体测定,阐述 CO₂ 增长对其生 理生态的影响。

1 样地基本概况①

研究试验样地设于江西省分宜市亚热带林业实验中心年珠实验林场,地理位置 114°33′47′E,27°34′41′N,属 罗霄山脉北端武功山支脉,是杉木分布的中带中部产区。植被属江南山地丘陵常绿栲楠、油茶林、杉松林亚区。气候 属亚热带湿润气候区,四季分明,气候温和,日照充足,雨量充沛。年均气温 16.8℃,极端最高温 39.9℃,极端最低 温-8.3℃,年积温 5355℃;年降水量 1590mm,年蒸发量 1504mm;年均日照 1657h;太阳辐射年总量约 487KJ/ cm²;年均相对湿度 80%;无霜期 270d^①。试验样地为杉木人工纯林,林龄 17a,地位指数 16,株行距 2.0m×1. 5m,平均胸径 13.8cm,平均树高 12.6m,平均冠幅 2.89m,枝下高 7.52m。海拔 240~270m,坡向东南(南偏东 20°),坡度 20°。成土母质为砂页岩,土壤属黄棕壤,土层厚度 70~100cm。

2 野外实验方法

在样地内根据林分平均胸径、平均树高、平均冠幅和冠长,选取1株标准木,将活树冠等分为上、中、下3层,每 层中分别3个针叶年龄层次(当年生、1a生、2a生及其以上),分别选取阳生叶和阴生叶代表性样枝,在相近的温、 湿度范围内,用LI-6200光合测定系统测定如下项目:①净光合速率、蒸腾速率、气孔导度等生理生态指标,根据小 枝针叶面积计算单位针叶面积相应速率;②高CO₂浓度(45μ mol/L左右)下的净光合-光响应曲线,并寻找光饱和 点和光补偿点;③对高光强(1500μ mol/m² · s左右 *PAR*)下的净光合速率等进行连续测定,利用系统内的CO₂吸 收器(Scrubber)来快速改变叶室内CO₂的浓度,以测定光合速率等对CO₂浓度的反应曲线。

测定时间为 1997 年 7 月下旬至 8 月上旬,即杉木生长中期。杉木针叶为披针形片状体,且单面有气 孔,故小枝针叶面积可采用复印称重法测定,即将测定枝上的针叶全部剪下,用透明胶带粘贴于复印纸上 复印,将复印出的针叶剪下称重,根据单位复印纸的重量计算测定枝上的叶面积。

3 研究结果与讨论

3.1 CO2 浓度增长对杉木针叶光合特性的影响

为便于对比分析,分别测定了上部和中部不同年龄样枝在大气正常 CO₂ 浓度(15.6~17.0 μ mol/L)和 CO₂ 倍增(45 μ mol/L)下的净光合-光响应曲线。图 1 表明,CO₂ 增加可明显提高针叶净光合速率(*Pn*)。在 相近的空气温度和相对湿度条件下,在 45 μ mol/L(即 CO₂ 提高 2.5~3 倍)CO₂ 浓度下测定的各样枝 *Pn*, 比在正常 CO₂ 浓度下提高 1 倍以上。图 2-I 结果也表明,随着 CO₂ 浓度的提高,*Pn* 呈直线上升趋势,当 CO₂ 浓度达 45 μ mol/L 左右时,*Pn* 增加速度减缓,但上部和中部当年生阳枝在 CO₂ 浓度分别达 117 μ mol/L L 和 87 μ mol/L 时,仍未完全达到饱和,说明 *Pn* 随 CO₂ 的增加还有增长潜力。由于测定各样枝时温湿度等 条件的差异,很难将不同部位和年龄样枝对 CO₂ 倍增的响应进行对比,但 *Pn* 的提高是十分明显的。CO₂ 浓度增加,使植物体内 RuBP 羧化酶的羧化活性增强,导致光合作用增强,是引起 *Pn* 增加的主要原因^[3]。

CO₂ 浓度倍增不仅提高了净光合速率,而且使光补偿点降低,光饱和点提高(表 1),尤其是对于中下部的阴 枝,表现得更为明显,如中部 1 年生和 2 年生阴枝,在高 CO₂ 浓度下,光补偿点趋于零。光补偿点的降低及饱和 点和光抑制点的提高,无凝会提高针叶在弱光和强光照条件下的光合能力,从而增加其同化量。

应用下述经验方程[19]对光响应曲线进行拟合:

 $P_n = C_1(1 - \exp(-C_2 PAR/C_1))$

万方数据—

① 肖文发,杉木人工林冠层光合生理生态模拟研究.博士论文.1994

式中 P_n 为净光合速率; PAR 为光合有效辐射强度; C_1 和 C_2 为参数, 其生物学意义分别为最大净光合速率 P_{max} 和光量子效率 α (即曲线的初始斜率)。拟合参数列于表 1, 表明大气 CO₂ 的增加至 45 μ mol/L 时, 光量 子效率提高 40%~295%。

同时 CO₂ 的倍增还使光抑制点上升,延缓光抑制(图 1),尤其是处于中下部的阴枝,这种效应更为明显。如中部当年生和 2a 生阴枝,在正常 CO₂ 浓度下,光强(*PAR*)分别超过 1350 μ mol/m² • s 和 800 μ mol/m² • s 就发生光抑制,而在 45 μ mol/L CO₂ 浓度下,光抑制发生在 1800 μ mol/m² • s 左右(图 1-D,图 1-F)。 产生光抑制的原因,有人认为主要是光系统 I 反应中心受到破坏,有人认为是光系统 I 还原侧的 Q_B 蛋白 受到损害^[20]。

相同部位和年龄的阳枝和阴枝,对高浓度 CO₂ 的反应也不同,图 1 和表 1 表明,大气 CO₂ 倍增,阴枝 净光合速率增加的相对幅度高于阳枝。这与 Bazzaz 等的研究结果相似,即高浓度 CO₂ 引起的生长速率的 提高,耐荫树种要比喜光树种高得多^[4]。然而,阴枝光量子效率提高的幅度却低于阳枝,可能是由于阴枝本 身具有较高的量子效率,阳枝较低,而在高浓度 CO₂ 下阴枝和阳枝量子效率并无明显差异。

图 1 CO₂ 增加对杉木针叶净光合(Pn)-PAR 响应曲线的影响

ig. 1 Effect of elevated CO_2 on net photosynthesis (*Pn*)-*PAR* curve of China fir shoots with different age and position A. 0-year-old sunlit shoot at the upper part of crown; B. 0-year-old shade shoot at the upper part of crown; C. 1-year-old sunlit shoot at the upper part of crown; D. 2-years-old shade shoot at the middle part of crown; E. 0-year-old sunlit shoot at the middle part of crown; F. 0-year-old shade shoot at the middle part of crown; G. 1-year-old sunlit shoot at the middle part of crown; A 15. $6 \sim 17.0 \mu \text{mol/L}$

3.2 CO2 浓度增长对气孔导度和蒸腾速率的影响

气孔是植物进行 CO₂ 和水汽交换的主要通道,而气孔导度则是反映这种交换能力的一个极其重要的 生理指标,**万步)数排**度增加对气孔导度的影响就显得特别重要。表 2表明,CO₂ 浓度从 15.6~ 17.0µmol/L(杉木冠层 CO₂ 浓度)提高到 45µmol/L 左右时,杉木针叶平均气孔导度大多降低,降低幅度 从 20%到 44%不等,且上部大于中部,但测定结果中上部和中部当年生阴枝略为上升,呈现出不同的趋向。图 2-I 表明,当 CO₂ 浓度从其补偿点开始上升时,气孔导度迅速降低,随后趋于平缓,上部当年生降低 幅度大于中部当年生针叶。

CO₂ 浓度增长引起气孔导度降低的原因,有人认为可能是气孔密度减少所致^[5,6],而有人认为气孔导 度降低的主要原因不是气孔密度减少,而是植物叶内部 CO₂ 增加直接引起气孔的部分关闭^[7,8]。在本文短 期 CO₂ 增加情况下气孔密度减少是不可能的,因而气孔的部分关闭是气孔 降低的主要原因。

表1 CO₂ 浓度增长对杉木中龄林针叶光合特性的影响($\mu \mod/m^2 \cdot s$)

Table 1 Effects of enriched CO₂ on photosynthetic characteristics of China fir shoots with different age and position

	15.6~17.0μmol/L				45μmol/L					
CO₂ 浓度 Concentration	光补 偿点 LCP	光饱 和点 LSP	光量子 效率 LPE	最大光 合速率 MPR	光补 偿点 LCP	光饱 和点 LSP	光量子 效率 LPE	提高 Icrease (%)	最大光 合速率 MPR	提高 Icrease (%)
上部当年生阳枝①	25.2	>2253	0.0115	3.2545	13.4	>2024	0.0388	237.4	10.5991	225.7
上部当年生阴枝②	15.9	>1720	0.0176	3.6138	8.5	>2022	0.0403	129.0	11.4232	216.1
上部1年生阳枝③	15.3	1931.5	0.0130	3.9186	5.9	>1946	0.0514	295.4	10.8900	177.9
中部当年生阳枝④	30.8	1772	0.0201	3.4748	7.7	>2343	0.0388	93.0	6.7566	94.4
中部当年生阴枝⑤	21.4	1350	0.0240	3.4140	5.5	1720	0.0372	55.0	9.7630	276.0
中部1年生阳枝⑥	9.4	1426	0.0308	4.5859	3.2	>1000	0.0430	39.6	10.3517	125.7
中部2年生阴枝⑦	7.5	835	0.0429	2.4557	0	1833	0.0642	49.6	6.4508	162.7

①0-year-old sunlit shoot at the upper part of crown; ②0-year-old shade shoot at the upper part of crown; ③1-year-old sunlit shoot at the upper part of crown; ④0-year-old sunlit shoot at the middle part of crown; ⑤0-year-old shade shoot at the middle part of crown; ⑥1-year-old sunlit shoot at the middle part of crown; ⑦2-years-old shade shoot at the middle part of crown; ⑥1-year-old sunlit shoot at the middle part of crown; ⑦2-years-old shade shoot at the middle part of crown; ⑧1-year-old sunlit shoot at the middle part of crown; ⑦2-years-old shade shoot at the middle part of crown; ⑧1-year-old sunlit shoot at the middle part of crown; ⑦2-years-old shade shoot at the middle part of crown; ⑧1-year-old sunlit shoot at the middle part of crown; ⑦2-years-old shade shoot at the middle part of crown; ⑧1-year-old sunlit shoot at the middle part of crown; ⑦2-years-old shade shoot at the middle part of crown; ⑧1-year-old sunlit shoot at the middle part of crown; ⑦2-years-old shade shoot at the middle part of crown; ⑧1-year-old sunlit shoot at the middle part of crown; ⑦2-years-old shade shoot at the middle part of crown; ⑧1-year-old sunlit shoot at the middle part of crown; ⑧1-year-old shade shoot at the middle part of crown; ⑧1-year-old shade shoot at the middle part of crown; ⑧1-year-old shade shoot at the middle part of crown; ⑧1-year-old shade shoot at the middle part of crown; ⑧1-year-old shade shoot at the middle part of crown; ⑧1-year-old shade shoot at the middle part of crown; ⑧1-year-old shade shoot at the middle part of crown; ⑧1-year-old shade shoot at the middle part of crown; ⑧1-year-old shade shoot at the middle part of crown; ⑧1-year-old shade shoot at the middle part of crown; ⑧1-year-old shade shoot at the middle part of crown; ⑧1-year-old shade shoot at the middle part of crown; ⑧1-year-old shade shoot at the middle part of crown; ⑧1-year-old shade shoot at the middle part of crown; ⑧1-year-old shade shoot at the middle part of crown; ⑧1-year-old shade shoot at the middle part of crown; ⑧1-year-old sha

表 2 CO₂ 浓度增长对杉木针叶气孔导度、蒸腾速率、水分利用效率的影响

Table 2Effects of enriched CO2 on stomatal conductance (COND), transpiration rate (TR) and water use efficiency(WUE) of China fir shoots with different age and position

	15.6~17.0μmol/L								
CO ₂ 浓度 CO ₂ Concentration	气孔 导度 <i>COND</i> (µmol/m・s	蒸腾速率 TR nmol/m ² ・ s) (j	水分利 用效率 WUE s) (µmol/µmo	气孔导度 <i>COND</i> µmol/m ² ・ 1)	变化率 Variation s)(%)(r	蒸腾速率 TR nmol/m ² ・	变化率 Variation s)(%) (水分利用 效率 WUE µmol/µmol	变化率 Variation (%)
上部当年生阳枝①	0.2175	0.5460	0.0027	0.1208	-44.4	0.3003	-45.0	0.0063	137.8
上部当年生阴枝②	0.0889	1.0033	0.0026	0.1055	18.6	1.0641	6.7	0.0052	100.1
上部1年生阳枝③	0.1655	1.4514	0.0019	0.0926	-44.1	1.1208	-22.8	0.0048	160.5
中部当年生阳枝④	0.1142	1.2356	0.0020	0.0707	-38.1	0.9857	-20.2	0.0057	191.2
中部当年生阴枝⑤	0.0802	1.7007	0.0015	0.0932	16.2	1.7095	0.5	0.0038	154.2
中部1年生阳枝⑥	0.1304	1.4281	0.0018	0.0815	-37.4	1.2177	-14.7	0.0040	126.3
中部2年生阴枝⑦	0.0687	0.9856	0.0023	0.0545	-20.7	0.9113	-7.5	0.0047	117.1

 $1 \sim 7$ are same as those in table 1

尽管大多数研究表明,随着 CO₂ 浓度增加,气孔导度降低^[9~11]。但不少研究表明不同植物的气孔导度 对 CO₂ 增长的反应不同,如 Gunderson 等发现北美鹅掌楸和美国白栎气孔导度对 CO₂ 增加没有明显反 应^[12],Higgi**开。内数 据**观测到扭叶松针叶气孔导度即使在 CO₂ 浓度高达 89.3µmol/L 时也没有变化^[13], 而 Kimball 等发现西加云杉的气孔导度随 CO₂ 浓度的增加而增加^[10]。对这种不同植物对 CO₂ 增长的不同 反应的原因,目前尚不清楚。

蒸腾速率对 CO₂ 增加的反应与气孔导度基本一致。无论是气孔密度降低还是气孔的部分关闭引起气 孔导度降低,其结果均可导致蒸腾速率的下降。

图 2 CO₂ 增长对杉木光合、蒸腾、气孔导度和水分利用效率的影响

Fig. 2 Effects of elevated CO_2 concentration on net photosynthesis (Pn), transpiration, stomatal conductance and water use efficiency of China fir shoots

a,b 分别为上部当年生阳枝净光合和蒸腾速率 Pn and TR of 0-year-old sunlit shoot at the upper part of crown;c,d 分别为中部当年生阳枝净光合和蒸腾速率 Pn and TR of 0-year-old sunlit shoot at the middle part of crown;e,f 分别 为上部当年生阳枝气孔导度和水分利用效率 COND and WUE of 0-year-old sunlit shoot at the upper part of crown; g,h 分别为中部当年生阳枝气孔导度和水分利用效率 Pn and TR of 0-year-old sunlit shoot at the middle part of crown.

3.3 CO2 浓度增长对水分利用效率(WUE)的影响

水分利用效率(WUE)是指植物蒸腾消耗单位重量的水分所同化的 CO_2 的量,常用净光合速率与蒸腾 速率的比值表示。表 2 表明,在大气 CO_2 浓度为 45μ mol/L 时,杉木针叶的 WUE 提高约 $1\sim2$ 倍($100\%\sim$ 191%)。图 2-I 也表明,当 CO_2 从其补偿点开始上升时,WUE 呈线性增长,约达 45μ mol/L 后,尽管增长速 度变缓,但在 CO_2 浓度达 116μ mol/L 以上时,WUE 还在增加。

植物 WUE 的提高与上述 CO₂ 增加导致净光合速率提高和气孔导度下降而降低蒸腾速率有关。水汽 从叶内向外扩散主要依赖于气孔,气孔阻力是水汽向外扩散的唯一重要的限制因素,气孔的部分关闭或气 孔密度的降低会引起蒸腾的下降。而 CO₂ 从外向叶内的扩散除受到气孔阻力外,还受叶肉阻力的限制。在 木本植物中这种叶肉阻力的限制常大于气孔阻力^[14]。因而 CO₂ 增加引起气孔导度的降低对 CO₂ 固定的影 响远小于对水汽扩散的影响,而且大气 CO₂ 的增加引起胞间 CO₂ 的增多可以更多地补偿气孔导度降低所 带来的 CO₂ 减少。因此环境 CO₂ 增长,使气孔导度降低导致蒸腾失水减少,而净光合速率却大幅度增加, 从而提高了水分利用效率。多数研究表明,CO₂ 增加使植物的 WUE 提高是 Pn 提高和蒸腾降低共同作用 的结果^[3,7];有人认为,CO₂ 增加引起植物气孔导度降低,特别是气孔的部分关闭是提高植物 WUE 的关键 因子^[15,21];Rogers 等发现一些植物随 CO₂ 的增长 Pn 并未增大,因此他们认为 WUE 的提高仅仅是由于蒸 腾下降所引起^[16];Gunderson 等则发现 CO₂ 增加引起的 WUE 提高是由于 Pn 的单独增加所致^[12]。

3.4 对暗呼吸速率的影响

在相近温度条件下的测定表明(表 3),在 45μ mol/L CO₂ 浓度下杉木针叶的暗呼吸速率,比正常情况 下的暗呼吸降低达 $20\% \sim 72\%$,尤其是中部 2 年生阴枝,在 45μ mol/L CO₂ 条件下暗呼吸为零。在早期的 一些研究认为,随 CO₂ 浓度的增加,总生长量增加,暗呼吸也增加,但较新的研究发现暗呼吸却随 CO₂ 的 增加而降低^[1]。Kramer 和 Sionit 曾报道,随 CO₂ 浓度的增加,呼吸作用减弱^[3]。经测定,有些木本植物例如 欧洲栎,其暗呼吸是下降的,但对木本植物来说,对暗呼吸随 CO₂ 增加的变化研究较少^[1]。从本研究测定 结果看,CO₂ 倍增,杉木针叶暗呼吸下降是明显的。

万方数据

CO ₂ 浓度 CO ₂ Concentration	15.6~17	.0µmol/L	$45\mu mol/L$				
	测定温度 (℃) Temperature	暗呼吸 DR (µmol/m²•s)	测定温度 (℃) Temperature	暗呼吸 DR (µmol/m²・s)	变化率 (%) Variation		
上部当年生阳枝①	33.3	1.6893	33.5	1.0774	-36.2		
上部当年生阴枝②	31.1	1.0422	31.0	0.5473	-47.8		
上部 1a 生阳枝③	33.8	1.1112	33.5	0.4538	-59.2		
上部 1a 生阴枝④	29.9	0.6264	29.9	0.1728	-72.4		
上部 2a 生阴枝⑤	36.7	0.8223	36.1	0.5459	-33.6		
中部当年生阳枝⑥	32.6	0.8074	32.9	0.6176	-23.5		
中部当年生阴枝⑦	33.5	0.6923	33.5	0.5520	-20.3		
中部 1a 生阳枝⑧	33.4	0.8232	34.2	0.2491	-69.7		
中部 1a 生阴枝⑨	34.0	1.1499	34.4	0.7849	-31.7		
中部 2a 生阴枝⑩	32.1	0.0	30.0	0.4025			

表 3 CO₂ 浓度增长对杉木针叶暗呼吸的影响

Do-year-old sunlit shoot at the upper part of crown; 20-year-old shade shoot at the upper part of crown; 31-year-old sunlit shoot at the upper part of crown; (4)1-year-old shade shoot at the upper part of crown; (5)2-years-old shade shoot at the upper part of crown; [®]0-year-old sunlit shoot at the middle part of crown; [®]0-year-old shade shoot at the middle part of crown; (8)1-year-old sunlit shoot at the middle part of crown; (9)1-year-old shade shoot at the middle part of crown; 102-years-old shade shoot at the middle part of crown

结语 3

对杉木人工中龄林的研究表明,CO。增长能大大提高针叶净光合速率、水分利用效率和光饱和点,降 低气孔导度、蒸腾速率及暗呼吸。但本文测定仅限于杉木针叶对CO。增长的瞬时或短期反应。由于受到实 验条件的限制,未能对 CO。长期倍增情况下杉木针叶的反应进行研究。由于植物具有适应能力,即当环境 CO2 浓度增高时,植物的净光合速率随着提高,但经过一段时间的适应,光合速率又逐渐下降。植物这种对 CO。浓度变化的适应性,使植物对 CO。增长的反应变得复杂得多¹¹。因此研究树木对长期 CO。增长的反 应具有非常重要的意义。从测定的高 CO₂ 条件下的光响应曲线推测,杉木中龄林针叶对 CO₂ 增长的反应 可持续 30min 以上。一些研究表明,在高浓度 CO2条件下,有些 C3植物光合作用速率的提高能持续几分 钟到几个小时[17];有些可持续几天至几个星期[22]。Bazza 认为,这种高浓度 CO2 作用时间的长短性,也许 与植物光合产物的库容量有关『ユユ]。总之.CO。倍增对杉木光合生理生态特性的长期影响还有待于进一步 的深入研究。

参考文献

- $\lceil 1 \rceil$ 徐德应.大气 CO₂ 增长和气候变化对森林的影响研究进展.世界林业研究,1994,(2):26~32.
- $\begin{bmatrix} 2 \end{bmatrix}$ 徐德应,郭泉水,阎 洪,等. 气候变化对中国森林影响研究. 北京,中国科学技术出版社,1997.1~15.
- [3] Kramer P J and Sionit N. Effect of increasing carbon dioxide concentration on the physiology and growth of forest tress. In: The Greenhouse Effect Climate, and U.S. Forests, 1986. 219~243.
- [4] Bazzaz F A, Coleman J S and Morse S R. Growth respionse of seven major co-occuring tree species of the northeastern Unite States to elevated CO2. Can. J. For. Res. 1990, 20:1479~1484.
- [5] Eamus D. Assimilation, stomatal conductance, specific leaf area and chlorophyll responses to elevated CO₂ of Maranthes corymbosa, a tropical monsoon rain forest species. Aust. J. Plant Physiol. 1993, 20:741~755.
- $\begin{bmatrix} 6 \end{bmatrix}$ Berryman C A. Stomatal responses to a range of variables in two tropical tree species grown with CO₂ enrichmen. J. Exp. Bot. 1994, 45: 539~546.
- [7] Morison J I L and Gifford R M. Stomatal sensitivity to carbon dioxide and humidity. Plant Physiiol, 1983, 71:789 ~796万方数据
- [8] Paoletti E and Gellini R. Stomatal density variation in beech and holm oak leaves collected over the last 200 years.

Acta Oecologia, 1993, 14:173~178.

- [9] Tyree M T and Alexander J D. Plant water relations and the effects of elevated CO₂ a review and suggestions for future research. Vegetatio, 1993, 104/105:47~63.
- [10] Kimball B A. Effect of increasing atmospheric CO₂ on vegetation. *Vegetatio*. 1993, **104**/105:65~75.
- [11] Samarakoon A B. Transpiration and leaf area under elevated CO₂: Effets of soil water status and genotype in wheat. Aust J Plant Physiol, 1995, 22(1): 33~44.
- [12] Gunderson C A. Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in elevated CO₂, No loss of photosynthetic enhancement. *Plant*, *Cell* &. *Environ*, 1993, 16:797~807.
- [13] Higginbotham K O. Physiological ecology of lodgepole pine (*Pinus contorta*) in an enriched CO₂ environment. *Cana*dian J. of For. Res. ,1985, 15: 417~421.
- [14] Teskely R O. Stomatal and nonstomatal limitation to net photosynthesis in *Pinus taeda* L. under different environment conditions. *Tree Physioligy*, 1986, 2:131~142.
- [15] Murray D R. Plant response to carbon dioxide. Ameri J. Bot. ,1995,82(5):690~697.
- [16] Rogers H H. Responses of selected plant species to elevated carbon dioxide in the field. J. Environ. Qual., 1985, 12:569~574.
- [17] Sage R F, Sharkey T D and Seeman J R. The in-vivo response of the ribulose-1,5-bisphosphate carboxylase activation state and the pool sizes of photosynthetic metabolites to elevated CO₂ in *Phaseolus vulgaries*. *Planta*, 1988, 174:407~416.
- [18] 王凤友,陈雄文.二氧化碳浓度增加对红松和兴安落叶松幼苗生理生态的影响.见:徐德应主编.气候变化对中国森林影响研究.北京:中国科学技术出版社,1997.97~104.
- [19] 索恩利JHM(Thornley JHM.). 王天铎译. 植物生理的数学模型.北京:科学出版社,1983.
- [20] 沈允钢,许大全.光合机构对环境的响应与适应.植物生理与分子生物学.北京:科学出版社,1992.225~235.
- [21] Bazzaz F A. The responses of natural ecosystems to the rising global CO₂ levels. Annu. Rev. Ecol. Syst., 1990, 21: 167~196.
- [22] Sage R F, Sharkey T D and Seeman J R. Acclimation of photosynthesis to elevated CO₂ in five C₃ species. *Plant Physiol*, 1989, **89**:590~596.